Домой Симптомы Энергия антивещества. Что такое материя и антиматерия? Общее понятие о материи и антиматерии

Энергия антивещества. Что такое материя и антиматерия? Общее понятие о материи и антиматерии

« Антиматерия физически и химически ничем не отличается от материи. Собственно, это та же материя, только вывернутая наизнанку. Для проционидов наши физические и химические справочники пригодны так же, как и для нас. Они описывают те же самые закономерности, те же самые реакции с теми же самыми элементами. Только для них наша материя является антиматерией. Вопрос, с какой стороны смотреть».(Кшиштоф Борунь, «Антимир», 1963)

Алексей Левин

Мысль о возможности существования антивещества была высказана еще в эпоху классической физики, в конце XIX века


Водород и антиводород по своему строению совершенно идентичны — они состоят из адрона и лептона. В первом случае положительно заряженный протон, состоящий из трех кварков (двух верхних и одного нижнего), и отрицательно заряженный электрон образуют атом хорошо знакомого нам водорода. Антиводород состоит из отрицательно заряженного антипротона, который, в свою очередь, построен из трех соответствующих антикварков и положительно заряженного позитрона (античастицы электрона)


Аннигиляция электрона и позитрона в случае низких энергий порождает как минимум два (это обусловлено сохранением импульса) фотона. Этот процесс схематически можно изобразить с помощью так называемой диаграммы Фейнмана. При превышении определенного энергетического порога аннигиляция может происходить с рождением «виртуальных» фотонов, которые вновь быстро распадаются на пары электронов и позитронов


Компьютерная модель аннигиляции вещества и антивещества. Красные линии — фотоны, разлетающиеся в противоположных направлениях при аннигиляции позитронов, а желтые — частицы, образующиеся при аннигиляции антипротонов. Треки исходят из одной точки — это свидетельство того, что антипротоны и позитроны образуют атомы антиводорода (эксперимент ATHENA в ЦЕРН)


Времяпроекционная камера эксперимента PANDA международного центра FAIR в Дармштадте

Открытие античастиц по праву считается крупнейшим достижением физики ХХ столетия. Оно впервые доказало нестабильность материи на самом глубинном, самом фундаментальном уровне. До этого все были уверены, что вещество нашего мира сложено из элементарных частиц, которые никогда не исчезают и не рождаются заново. Эта простая картина ушла в прошлое, когда без малого 80 лет назад было доказано, что электрон и его положительно заряженный двойник при встрече исчезают, рождая кванты электромагнитного излучения. Позднее выяснилось, что частицам микромира вообще свойственно превращаться друг в друга, причем многими способами. Открытие античастиц положило начало коренной трансформации фундаментальных представлений о природе материи.

Мысль о возможности существования антивещества впервые была высказана в 1898 году — англичанин Артур Шустер опубликовал в журнале Nature весьма туманную заметку, вероятно, вдохновленную недавним открытием электрона. «Если существует отрицательное электричество, — вопрошал Шустер, — то почему бы не существовать отрицательно заряженному золоту, такому же желтому, с той же точкой плавления и с таким же спектром?» А дальше у него — впервые в мировой научной литературе — появляются и слова «антиатом» и «антивещество». Шустер предполагал, что антиатомы притягиваются друг к другу гравитационными силами, но отталкиваются от обычной материи.

Антиэлектроны впервые были замечены в эксперименте опять-таки до момента своего официального открытия. Это сделал ленинградский физик Дмитрий Скобельцин, который в 1920-х годах исследовал рассеяние гамма-лучей на электронах в камере Вильсона, помещенной в магнитное поле. Он заметил, что некоторые треки вроде бы электронного происхождения искривляются не туда, куда положено. Дело, разумеется, в том, что гамма-квант при взаимодействии с веществом может давать начало электрону и позитрону, которые в магнитном поле закручиваются в противоположных направлениях. Скобельцин этого, естественно, не знал и объяснить странный эффект не смог, но в 1928 году доложил о нем на международной конференции в Кембридже. По занятному совпадению, годом ранее в совет кембриджского колледжа Св. Иоанна избрали молодого физика-теоретика Поля Дирака, чьи исследования со временем позволили объяснить эти аномалии.

Уравнение Дирака

В 1926 году австриец Эрвин Шредингер сформулировал уравнение, описывающее поведение нерелятивистских частиц, подчиняющихся квантовой механике, — дифференциальное уравнение, решения которого определяют состояния частицы. Уравнение Шредингера описывало частицу, которая не имеет собственного углового импульса — спина (иначе говоря, не ведет себя как волчок). Однако в 1926 году уже было известно, что электроны обладают спином, который может иметь два различных значения: грубо говоря, ось электронного волчка ориентируется в пространстве лишь в двух противоположных направлениях (спустя год аналогичное доказательство было получено и для протонов). Тогда же швейцарский теоретик Вольфганг Паули обобщил уравнение Шредингера для электрона, так чтобы оно позволяло учитывать спин. Таким образом, спин сперва открыли экспериментально, а потом искусственно навязали шредингеровскому уравнению.

В релятивистской механике Эйнштейна формула для энергии свободной частицы выглядит сложнее, нежели в ньютоновской. Перевести эйнштейновскую формулу в квантовое уравнение несложно, это проделали и Шредингер, и трое его современников. Но решения такого уравнения показывают, что вероятность нахождения частицы в определенной точке может оказаться отрицательной, что не имеет физического смысла. Возникают и другие неприятности, обусловленные тем, что математическая структура нового уравнения (его называют уравнением Клейна-Гордона) расходится с теорией относительности (на формальном языке, оно не является релятивистски инвариантным).

Вот над этой задачей в 1927 году и задумался Дирак. Для сохранения инвариантности он включил в уравнение не квадраты операторов энергии и импульса, а их первую степень. Чтобы записать уравнение в таком виде, пришлось изначально ввести в него более сложные, чем у Паули, матрицы размером 4х4. У этого уравнения обнаружились четыре равноправных решения, причем в двух случаях энергия электрона положительна, а в двух — отрицательна.

Тут-то и возникла загвоздка. Первая пара решений интерпретировалась просто — это обычный электрон в каждом из возможных спиновых состояний. Если добавить в уравнение Дирака электромагнитное поле, то легко получится, что электрон обладает правильным магнитным моментом. Это был гигантский успех теории Дирака, которая без всяких дополнительных предположений наделила электрон и спином, и магнитным моментом. Однако в первое время никто не мог решить, что делать с остальными решениями. И в ньютоновской, и в эйнштейновской механике энергия свободной частицы никогда не бывает отрицательной, и частицы с энергией меньше нуля вызывали недоумение. К тому же было непонятно, почему обычные электроны не переходят в предсказанные теорией Дирака состояния с заведомо меньшей энергией, в то время как электроны в оболочках атомов такой возможности не упускают.

Поиски смысла

Через два года Дирак нашел очень красивую интерпретацию парадоксальных решений. В соответствии с принципом Паули два электрона (как и любые частицы с полуцелым спином) не могут одновременно находиться в одинаковом квантовом состоянии. По мысли Дирака, все состояния с отрицательной энергией в норме уже заполнены, а переход в эти состояния из зоны положительных энергий запрещен принципом Паули. Поэтому дираковское море электронов с отрицательной энергией в принципе ненаблюдаемо, но лишь до тех пор, пока в нем нет свободных вакансий. Такую вакансию можно создать, если вышибить электрон с отрицательного энергетического уровня на положительный (например, достаточно мощным квантом электромагнитного излучения). Поскольку электронное море потеряет единицу отрицательного заряда, появившаяся вакансия (Дирак назвал ее дыркой) будет вести себя в электрическом поле как частица с плюсовым зарядом. По этой же логике падение электрона из нормального состояния в такую дырку ведет к исчезновению и электрона, и дырки, сопровождающемуся испусканием одного фотона.

А как проявляют себя дираковские дырки в реальном мире? Сначала Дирак отождествлял их с протонами, о чем в 1930 году и написал в Nature. Это было как минимум странно — протон в 2000 раз тяжелее электрона. Будущий академик и нобелевский лауреат Игорь Тамм и будущий отец атомной бомбы Роберт Оппенгеймер выдвинули и более серьезное возражение, заметив, что тогда каждый атом водорода стоит перед угрозой исчезновения, а этого в природе не происходит. Дирак вскоре отказался от этой гипотезы и в сентябре 1931 года выступил со статьей, где предсказал, что дырки, если их удастся обнаружить, окажутся совершенно новыми частицами, неизвестными экспериментальной физике. Он предложил назвать их антиэлектронами.

Дираковская модель ушла в историю после создания квантовой электродинамики и квантовой теории поля, которые приписывают частицам и античастицам одинаковую реальность. Из квантовой электродинамики следует также, что встреча свободного электрона с антиэлектроном влечет за собой рождение не менее пары квантов, так что в этой части модель попросту неверна. Как нередко бывает, уравнение Дирака оказалось много умнее интерпретации, предложенной его создателем.

Открытие антиэлектрона

Как уже было сказано, позитроны фактически наблюдал еще Дмитрий Скобельцин. В 1930 году с ними столкнулся аспирант Калифорнийского технологического института Чунг-Яо Чао, исследовавший прохождение гамма-квантов сквозь свинцовую фольгу. В этом эксперименте возникали электронно-позитронные пары, после чего новорожденные позитроны аннигилировали с электронами атомных оболочек и порождали вторичное гамма-излучение, которое и зарегистрировал Чао. Однако многие физики усомнились в результатах, и эта работа признания не получила.

Руководителем Чао был президент Калтеха, нобелевский лауреат Роберт Милликен, который в те времена занимался космическими лучами (он и предложил этот термин). Милликен считал их потоком гамма-квантов и потому ожидал, что они будут расколачивать атомы на электроны и протоны (нейтрон открыли позже, в 1932 году). Милликен предложил проверить эту гипотезу Карлу Андерсону, другому своему аспиранту и к тому же приятелю Чао. Тот, подобно Скобельцину, решил воспользоваться камерой Вильсона, соединенной с очень мощным электромагнитом. Андерсон тоже получил треки заряженных частиц, которые внешне не отличались от треков электронов, но были изогнуты в обратном направлении. Сначала он приписал их электронам, которые движутся не сверху вниз, а снизу вверх. Для контроля он установил в центре камеры свинцовую пластинку толщиной 6 мм. Оказалось, что над пластиной величины импульсов частиц с треками электронного типа в два с лишним раза превышают эти показатели в нижней части камеры — отсюда следовало, что все частицы движутся сверху вниз. Этот же прием доказал, что частицы с аномальной закруткой не могут быть протонами — те бы застряли в свинцовом экране.

В конце концов Андерсон пришел к выводу, что почти все аномальные треки принадлежат каким-то легким частицам с положительным зарядом. Однако Милликен в это не поверил, а Андерсон без одобрения шефа не хотел публиковаться в научной печати. Поэтому он ограничился коротким письмом в популярный журнал Science News Letter и приложил к нему фотографию аномального трека. Согласившийся с интерпретацией Андерсона редактор предложил назвать новую частицу позитроном. Этот снимок был опубликован в декабре 1931 года.

Теперь вспомним, что Дирак обнародовал гипотезу о существовании антиэлектрона еще в сентябре. Однако и Андерсон, и Милликен почти ничего не знали о его теории и вряд ли понимали ее суть. Поэтому Андерсону не пришло в голову отождествить позитрон с дираковским антиэлектроном. Он еще долго пытался убедить Милликена в собственной правоте, но, так не достигнув успеха, в сентябре 1932 года опубликовал в журнале Science заметку о своих наблюдениях. Однако в этой работе речь идет все-таки не о двойнике электрона, а лишь о положительно заряженной частице неизвестного вида, масса которой много меньше массы протона.

Следующий шаг к идентификации антиэлектрона сделали в месте его предсказания — в Кембридже. Английский физик Патрик Блэкетт и его итальянский коллега Джузеппе Оккиалини занимались исследованием космических лучей в знаменитой Кавендишской лаборатории, возглавляемой великим Резерфордом. Оккиалини предложил оснастить камеру Вильсона электронной схемой (придуманной его соотечественником Бруно Росси), включавшей камеру в случае одновременного срабатывания счетчиков Гейгера, один из которых был установлен над камерой, а другой — под ней. К осени 1932 года партнеры получили около 700 фотографий треков, которые можно было приписать заряженным частицам космического происхождения. Среди них имелись и V-образные трековые пары, порожденные расходящимися в магнитном поле электронами и позитронами.

Блэкетт знал о предсказанном Дираком антиэлектроне, но не принимал его теорию всерьез. Сам Дирак тоже не разглядел своей гипотетической частицы на снимках Блэкетта. В итоге Блэкетт и Оккиалини правильно интерпретировали свои фотоснимки лишь позднее, когда ознакомились с сентябрьской публикацией Андерсона. Свои выводы они представили в статье со скромным заголовком «Фотографии треков проникающей радиации», добравшейся до редакции журнала Proceedings of the Royal Society 7 февраля 1933 года. К этому времени Андерсон узнал о конкурентах из Кавендиша и вполне адекватно изложил свои результаты в четырехстраничной статье «Положительный электрон», которая поступила в журнал Physical Review 28 февраля. Поскольку приоритет Андерсона был установлен предыдущими публикациями, он один и получил за открытие позитрона Нобелевскую премию (в 1936 году, совместно с первооткрывателем космических лучей Виктором Гессом). Блэкетт был удостоен этой награды 12 годами позже (с формулировкой «За усовершенствование методов наблюдений на камере Вильсона и за открытия в области ядерной физики и космической радиации»), а вот Оккиалини премией обошли — считается, что по политическим соображениям.

Вскоре исследования позитрона двинулись вперед семимильными шагами. Парижский физик Жан Тибо наблюдал электронно-позитронные пары земного происхождения, порожденные торможением в свинце гамма-квантов от радиоактивного источника. Он доказал, что у обеих частиц отношение заряда к массе по абсолютной величине совпадает с очень высокой точностью. В 1934 году Фредерик Жолио и Ирен Кюри обнаружили, что позитроны возникают и при радиоактивном распаде. Так что к середине 30-х годов ХХ века существование предсказанных Дираком антиэлектронов превратилось в установленный факт.

Антинуклоны

Механизм порождения позитронов космическими лучами установлен давно. В основном первичное космическое излучение состоит из протонов с энергией более 1 ГэВ, которые при столкновениях с ядрами атомов в верхних слоях атмосферы порождают пионы и прочие нестабильные частицы. Пионы дают начало новым распадам, в ходе которых появляются гамма-кванты, которые при торможении в веществе производят электронно-позитронные пары.

Достаточно быстрые протоны при столкновении с атомными ядрами способны непосредственно порождать антипротоны и антинейтроны. В середине ХХ века физики уже не сомневались в возможности подобных превращений и искали их следы во вторичных космических лучах. Результаты некоторых наблюдений вроде бы можно было интерпретировать как аннигиляцию антипротонов, но без полной уверенности. Поэтому американские физики предложили проект сооружения протонного ускорителя на 6 ГэВ, на котором, согласно теории, было возможно получить оба типа антинуклонов. Эта машина, названная беватроном, была запущена в Лаборатории имени Лоуренса в Беркли в 1954 году. Спустя год Оуэн Чемберлен, Эмилио Сегре и их коллеги получили антипротоны, обстреливая протонами медную мишень. Еще через год другая группа физиков на той же установке зарегистрировала антинейтроны. В 1965 году в ЦЕРН и в Брукхейвенской национальной лаборатории были синтезированы ядра антидейтерия, сложенные из антипротона и антинейтрона. А вначале 1970-х из СССР пришло сообщение, что на 70-ГэВ протонном ускорителе Института физики высоких энергий синтезированы ядра антигелия-3 (два антипротона и антинейтрон) и антитрития (антипротон и два антинейтрона); в 2002 году несколько ядер легкого антигелия были получены и в ЦЕРН. Дальше дело пока не двинулось, так что синтез хотя бы одного ядра антизолота — дело неблизкого будущего.

Рукотворное антивещество

Ядра ядрами, но для настоящего антивещества требуются полноценные атомы. Простейший из них — атом антиводорода, антипротон плюс позитрон. Такие атомы были впервые созданы в ЦЕРН в 1995 году — через 40 лет после открытия антипротона. Вполне возможно, что это были первые атомы антиводорода за время существования нашей Вселенной после Большого взрыва — в природных условиях вероятность их рождения практически нулевая, а существование внеземных технологических цивилизаций все еще под вопросом.

Этот эксперимент был осуществлен под руководством немецкого физика Вальтера Олерта. В ЦЕРН тогда действовало накопительное кольцо LEAR, в котором хранились низкоэнергетические (всего-то 5,9 МэВ) антипротоны (оно проработало с 1984 по 1996 год). В эксперименте группы Олерта антипротоны направляли на струю ксенона. После столкновения антипротонов с ядрами этого газа возникали электронно-позитронные пары, и некоторые позитроны крайне редко (с частотой 10−17%!) объединялись с антипротонами в атомы антиводорода, движущиеся почти что со скоростью света. Незаряженные антиатомы больше не могли вращаться внутри кольца и вылетали по направлению к двум детекторам. В первом приборе каждый антиатом ионизировался, и освобожденный позитрон аннигилировал с электроном, порождая пару гамма-квантов. Антипротон уходил во второй детектор, который до исчезновения этой частицы успевал определить ее заряд и скорость. Сопоставление данных с обоих детекторов показало, что в эксперименте было синтезировано не меньше 9 атомов антиводорода. Вскоре релятивистские атомы антиводорода были созданы и в Фермилабе.

С лета 2000 года в ЦЕРН действует новое кольцо AD (Antiproton Decelerator). В него поступают антипротоны с кинетической энергией 3,5 ГэВ, которые замедляются до энергии в 100 МэВ и затем используются в разнообразных экспериментах. Антивеществом там занялись группы ATHENA и ATRAP, которые в 2002 году стали разово получать десятки тысяч атомов антиводорода. Эти атомы возникают в особых электромагнитных бутылках (так называемых ловушках Пеннинга), где смешиваются поступающие из AD антипротоны и рождающиеся при распаде натрия-22 позитроны. Правда, жизнь нейтральных антиатомов в такой ловушке измеряется всего лишь микросекундами (зато позитроны и антипротоны могут храниться там месяцами!). В настоящее время отрабатываются технологии более длительного хранения антиводорода.

В беседе с «ПМ» руководитель группы ATRAP (проект ATHENA уже завершен), профессор Гарвардского университета Джеральд Габриэлс подчеркнул, что, в отличие от LEAR, установка AD позволяет синтезировать относительно медленные (как говорят физики, холодные) атомы антиводорода, с которыми намного проще работать. Сейчас ученые пытаются еще сильнее охладить антиатомы и перевести их позитроны на уровни с меньшей энергией. Если это получится, то появится возможность дольше удерживать антиатомы в силовых ловушках и определять их физические свойства (к примеру, спектральные характеристики). Эти показатели можно будет сопоставить со свойствами обычного водорода и понять наконец, чем антивещество отличается от вещества. Работы еще непочатый край.

Почти всё, что мы детектируем на Земле и с помощью искусственных спутников, представляет собой вещество. Антивещество получается на Земле с помощью ускорителей высоких энергий. Так, например, были получены антипротоны, ядра антидейтрона, антигелия, антиатомы.
Астрономическими методами непосредственное наблюдение антиматерии невозможно, т.к. фотоны, рождающиеся при взаимодействии частиц антиматерии между собой, неотличимы от фотонов, рождающихся при взаимодействии частиц материи. Причина в том, что фотон является истинно нейтральной частицей и. В принципе материю от антиматерии можно отличить по наблюдению нейтрино ν и антинейтрино , однако в настоящее время такие наблюдения малореальны.
Если бы в ближайшем окружении Земли были области, в которых доминировала антиматерия, это должно было бы проявляться в виде аннигиляционных γ-квантов, которые образуются при аннигиляции материи и антиматерии. Важным аргументом в пользу преобладания материи над антиматерией являются космические лучи. Они являются частицами материи - протоны, электроны, атомные ядра, сделанные из протонов и нейтронов.
Образование частиц антивещества наблюдается в результате взаимодействия высокоэнергичных частиц космического излучения с атмосферой Земли. Античастицы образуются в областях с повышенной концентрацией энергии. Так, например, образование античастиц происходит в ядрах активных галактик. Как правило, в таких случаях частицы антиматерии появляются вместе с частицами материи. На следующей стадии происходит образование и аннигиляция частиц вещества и антивещества. Так, например, фотон с энергией больше 1 МэВ может в поле атомного ядра образовать электрон-позитронную пару. Образовавшийся позитрон при встрече с электроном аннигилирует, образуя чаще 2 и реже 3 γ-кванта.
Проблема существования антивещества во Вселенной является фундаментальной проблемой физики, которая связана с проблемой образования и развития Вселенной.
Существуют различные гипотезы относительно того, почему наблюдаемая Вселенная почти полностью состоит из материи. Существуют ли области Вселенной, в которых преобладает антиматерия? Можно ли использовать антиматерию? Причина очевидной асимметрии вещества и антивещества в видимой Вселенной одна из самых больших нерешенных загадок в современной физике. Процесс, посредством которого возникает эта асимметрия между частицами и античастицами называется бариогенезисом.
До 50-х годов ХХ века преобладало мнение, что во Вселенной одинаковое количество материи и антиматерии. Однако в середине 60-х годов работы в области теории Большого Взрыва поколебали эту точку зрения. Действительно, если в первые моменты существования горячей и плотной Вселенной количество частиц и античастиц было одинаковым, то их аннигиляция привела бы к тому, что во Вселенной осталось бы только излучение. В настоящее время большинство физиков согласно с тем, что в результате нарушения СР‑симметрии во Вселеннойв первые мгновения эволюции частиц образовалось несколько больше, чем античастиц – примерно одна частица на 10 9 пар частица-античастица. В итоге после аннигиляции осталось небольшое количество частиц.
Другая возможность объяснить доминирование вещества в «ближней» Вселенной это предположить, что антивещество сосредоточено в дальних плохо исследованных областях Вселенной. В 1979 году Флойд Стекер (Floyd Stecker)предположил, что асимметрия вещества и антивеществамогла возникнуть спонтанно в первые моменты после Большого взрыва, когда вещество и антивещество разлетелись в разные стороны.
Так как электромагнитное излучение одинаковым образом взаимодействует как с материей, так и с антиматерией, планеты, звезды и галактики из материи и антиматерии в электромагнитном излучении выглядят одинаково. Поэтому нужны другие методы поиска антивещества во Вселенной. Одним из таких методов является наблюдение антиядер в космическом пространстве. Это должны быть антиядра с массовым числом A > 4. Если бы удалось зарегистрировать вблизи Земли ядра антигелия, мы получили бы достаточно сильное свидетельство в пользу существования во Вселенной областей повышенного содержания антивещества.
Почему для поиска антиматерии следует искать ядра антигелия или более тяжелые ядра? Дело в том, что антипротоны могут образовываться при взаимодействии ультрарелятивистских протонов или других ядер космических лучей. В энергетическом спектр таких антипротонов (обычно их называют вторичными) должен наблюдаться широкий максимум в области 2 ГэВ. Другими источниками антипротонов, которые называют первичными, могут быть аннигиляция гипотетических суперсимметричных частиц, из которых, как предполагается состоит темная материя, – нейтралино и/или испарение «первичных» черных дыр. Парная аннигиляция нейтралино может приводить к рождению кварк-антикварковых струй, с последующей их адронизацией и образованием антипротонов. Первичные черные дыры могли образовываться в ранней Вселенной. Такие черные дыры с массой 10 14-15 могут довольно интенсивно испарять частицы (излучение Хокинга). Вклад таких первичных антипротонов в регистрируемый энергетический спектр можно пытаться обнаружить в низкоэнергетичной области < 1 ГэВ.
Поток вторичных антипротонов можно оценить в зависимости от принятой модели Галактики. Он достигает максимума при энергии ~10 ГэВ. В области энергией до нескольких сотен ГэВ по характеру спектра есть надежда получить информацию как о бариогенезе так и/или об аннигиляции суперсимметричных частиц и/или WIMPов.
Образование антидейтронов под действием космических лучей существенно менее вероятно. Спектр вторичных антидейтронов должен быть сдвинут в область бóльших энергий по сравнению со спектром вторичных антипротонов и быстро спадать при уменьшении энергии. Для первичных антидейтронов, образующихся при аннигиляции частиц темной материи и/или испарении первичных черных дыр, максимум спектра ожидается при энергии < 1 ГэВ. Таким образом, области первичных и вторичных антидейтронов должны быть хорошо разделены.
Вероятность образования ядер антигелия под действием космических лучей исчезающе мало. Действительно, для этого должны в одном месте и практически одновременно образоваться два антипротона и два антинейтрона, причем их относительные скорости дожны быть малы. В 1997 г. Паскаль Шардонэ (Pascal Chardonnet) оценил вероятность такого события. Согласно его оценкам, одно ядро антигелия может образоваться на 10 15 ультрарелятивистских протонов космических лучей. Среднее время ожидания такого события составляет 15 миллиардов лет, что сопоставимо с возрастом Вселенной.
Если во Вселенной на ранней стадии эволюции действительно образовались области пространства, в которых преобладает материя или антиматерия, то они должны разделяться, т.к. на границе этих областей образуется световое давление, которое разделяет вещество и антивещество. На границе между областями с материей и антиматерией должна происходить аннигиляция, соответственно излучаться анигиляционные гамма-кванты. Однако современные гамма-телескопы такое излучение не фиксируют. Исходя из чувствительности телескопов, были проведены оценки. Согласно им, области антивещества не могут ближе 65 миллионов световых лет. Таким образом, таких областей нет не только в нашей галактике, но и в нашем скоплении галактик, включающей в себя кроме Млечного пути еще 50 других галактик.
Регистрация ядер антигелия образовавшихся на таких расстояниях представляет собой сложную проблему. Не так просто ядру антигелия долететь с такого далекого расстояния до детектора и быть зарегистрированным. В частности, оно может «запутаться» в галактических и межгалактических магнитных полях и таким образом никогда не отлететь далеко от места своего образования. Кроме того, антигелию постоянно будет грозить опасность аннигиляции. И, наконец, детектор не слишком большая мишень, чтобы в него можно было легко попасть с такого гигантского расстояния. Поэтому эффективность регистрации ядер антигелия крайне низка.
В условиях «путешествия» антигелия очень много неясного, что не позволяет оценить вероятности регистрации ядер . Всегда сохраняется возможность того, что будь детектор чуть более чувствительный, и открытие бы произошло.
Ясно только, что время «путешествия» антиядра небольшой энергии может быть меньше, чем время существования Вселенной. Поэтому охотиться надо за высокоэнергетичными антиядрами. Кроме того, у таких ядер больше шансов преодолеть галактический космический ветер.
Что касается позитронов и антипротонов, то их тоже могут излучать гипотетические области антиматерии и давать вклад в измеряемые вблизи Земли спектры. По сравнению с антипротонами позитроны сложнее регистрировать. Это связано с тем, что потоки протонов, которые являются источником фона, в 10 3 больше, чем потоки позитронов. Сигналы от позитронов, прилетевших от областей антиматерии, могут «потонуть» в сигналах от позитронов, возникших в результате других процессов. Между тем, происхождение позитронов в космических лучах также до конца не известно. Есть ли в космических лучах первичные позитроны? Есть ли связь между избытком антипротонов и позитронов? Для прояснения ситуации необходимо измерение спектров позитронов в широком энергетическом диапазоне.
Первый запуск прибора для исследования космических лучей в верхние слои атмосферы с помощьювоздушного шара осуществилв 1907 году Виктор Гесс . Вплоть до начала 50-х годов ХХ века изучение космических лучей было источником наиболее важных открытий в физике частиц. Начиная с 1979 г. в таких экспериментах наблюдались антипротоны (Bogomolov, E. A. et al. 1979, Proc. 16th Int. Cosmic Ray Conf. (Kyoto), vol. 1, p.330; Golden, R. L. et al. 1979, Phys. Rev. Lett., 43, 1196). Они открыли новые возможности в исследовании антиматерии и темной материи.В современных исследованиях космических лучей используются методики, разработанной для экспериментов на ускорителях.
До последнего времени почти вся информация об античастицах в космических лучах была получена с помощью детекторов, запускаемых в высокие слои атмосферы на воздушных шарах. При этом возникло подозрение, что антипротонов больше, чем следовало из оценок вероятности их возникновения в результате взаимодействия космических лучей с межзвездной средой (вторичных антипротонов). Предлагаемые для объяснения «избыточных» антипротонов механизмы давали различные предсказания для энергетических спектров антипротонов. Однако непродолжительное время полёта воздушного шара и наличие остатков земной атмосферы ограничивали возможности такого рода экспериментов. Данные имели большую неопределённость, кроме того, не простирались по энергии далее 20 ГэВ.
Для регистрации античастиц используются большие воздушные шары (до 3 млн. кубических метров), способные поднять на высоту ~40 км тяжелые детекторы массой до 3 т. Как правило, как Монгольфье они открыты внизу, и теряют гелий, при падении наружной температуры. В большинстве случаев продолжительность полета не превышает 24 часа. Кроме того, температуры атмосферы, после быстрого уменьшения с нуля до 20–25 км, начинает расти, достигая максимума на высоте ~40 км, после чего начинает снова уменьшаться. Так как при понижении температуры наружного воздуха объем воздушного шара уменьшается, максимальная высота подъема не может быть выше, чем ~40 км. На этой высоте атмосфера еще довольно плотная, и поток антипротонов с энергиями в несколько десятков ГэВ, образующихся при взаимодействии первичных космических лучей с остаточной атмосферой, превышает поток антипротонов, образующихся в галактической среде. Для более высоких энергий зарегистрированных частиц ошибки становятся слишком большими, чтобы получить надежные результаты.
В последнее время начали осуществляться более длительные полеты (до 20 дней). В них также используются открытые шары, но потери гелия были существенно снижены, за счет того, что запуски шаров-зондов осуществлялись в очень высоких широтах, вблизи полюсов, во время полярного дня. Однако, масса их полезной нагрузки, при полетах на высоту 40км не превышает 1 т. Это слишком мало для измерения потоков антивещества при высоких энергиях. Для реализации сверхдлительных полетов на воздушных шарах (около100 дней) предполагается использовать и закрытые шары. Они толще и тяжелее, не теряют гелия и могут выдержать разность давлений внутри и снаружи. Они могут поднимать относительно легкие инструменты, менее 1 т.


Рис. 20.1. Запуск шара-зонда с физической аппаратурой.


Рис. 20.2. Детектор космического излучения BESS-Polar II. Спектрометр (1) с солнечными батареями (2).

Поиск антигелия с помощью спектрометров на воздушных шарах осуществлялся в рамках эксперимента BESS (B alloon-borne E xperiment with S uperconducting S pectrometer) (рис. 20.2). С 1993 г. по 2000 г. спектрометры BESS неоднократно запускались в верхние слои атмосферы в северной Канаде. Длительность полетов была около одних суток. Спектрометр постоянно совершенствовался и повышалась чувствительность. Суммарная чувствительность для отношения гелий/антигелий, достигнутая в этой серии полетов ~6.8×10 −7 в диапазоне жесткости 1-14 ГВ. В эксперименте BESS-TeV (2001 г.) диапазон жесткости спектрометра был увеличен до 500 ГВ и достигнута чувствительность 1.4×10 −4 . Для увеличения статистики в 2004-2008 гг. многодневные полеты усовершенствованных спектрометров (0.6-20 ГВ) осуществлялись в Антарктике. В 2004-2005 гг – в полете BESS-Polar I, длившемся 8.5 дней, была достигнута чувствительность 8×10 −6 . В 2007-2008 гг. в полете BESS-Polar II (длительность измерений 24.5 дня) была достигнута чувствительность 9.8×10 −8 . Суммарная чувствительность с учетом всех полетов BESS достигла величины 6.7×10 −8 . Ни одного ядра антигелия обнаружено не было.
Магнитный спектрометр, который использовался в полете BESS-Polar II состоит сверхпроводящего соленоидального магнита со сверхтонкими стенками, центрального трекера (JET/IDC), время-пролетного годоскопа (TOF) и черенковского детектора (рис. 20.3).

Рис. 20.3. Спектрометр эксперимента BESS-Polar II в разрезе.

Время-пролетный годоскоп позволяет измерять скорость (β) и энергетические потери (dE/dx). Он состоит из верхнего и нижнего пластиковых сцинтилляционных счетчиков, составленных из 10 и 12 сцинтилляционных полосок (100×950×10 мм). Временное разрешение системы времени пролета ~70 пс. Кроме того, есть еще третий сцинтилляционный счетчик (Middle-TOF), который находится внутри соленоида и состоит из 64 стержней пластикового сцинтиллятора. Он позволяет понизить энергетический порог регистрации, за счет частиц, которые не способны пролететь нижнюю часть соленоида.
Дрейфовые камеры находятся в однородном поле магнита. По 28 точкам, в каждой с точностью 200 мкм, рассчитывается кривизна траектории влетающей в спектрометр частицы, что позволяет определить eё магнитную жесткость R = pc/Ze и знак заряда.
Аэрогелиевый черенковский счетчик позволяет сепарировать сигналы от антипротонов и антидейтронов от фона e - /μ - .


Рис. 20.4. Идентификация частиц в установке BESS.

Идентификация частиц проводится по массе (рис. 20.4), которая связана с измеренными с помощью время-пролетных счетчиков и дрейфовых камер жесткостью R, скоростью частицы β и потерями энергии dE/dx соотношением

Для этого выделяются соответствующие области на двумерных распределениях dE/dx – |R| и β -1 – R.

Антипротонный радиационный пояс Земли

Коллаборацией PAMELA был обнаружен радиационный пояс вокруг Земли в области Южной Атлантической аномалии. Были измерены спектры антипротонов и протонов непосредственно в радиационном поясе и вне радиационного пояса (рис. 20.5, 20.6).
Показано, что антипротоны, которые регистрировались детекторными установками, установленными на баллонах и спутниках имеют вторичное происхождение. Они образуются в результате взаимодействия галактических космических лучей с межзвездным веществом или атмосферой в реакции pp → ppp. Однако существенно больший вклад вносит распад альбедных антинейтронов (антинейтронов, поток которых направлен от Земли), возникающих в реакции
pp → ppn. Эти антинейтроны проходят сквозь геомагнитное поле и распадаются, образуя антипротоны → + e + + ν e . Часть из образовавшихся антипротонов может быть захвачена магнитосферой,образуя радиационный пояс антипротонов. Так же как основным источником радиационного пояса протонов является распад нейтронов альбедо, так и распад антинейтронов приводит к образованию пояса антипротонов.
Из экспериментальных данных следует, что плотность антипротонов в радиационном поясе на 3–4 порядка больше, чем плотность антипротонов вне радиационного пояса. Форма спектра антипротонов, образованных непосредственно в результате взаимодействия галактических космических лучей практически совпадает с формой спектра антипротонов вне радиационного пояса антипротонов.
Проблема обнаружения антиматерии во Вселенной далека от решения. Активный поиск антиматерии предусмотрен в программах космических телескопов Ферми и др.

В 1930-м году известный английский физик-теоретик Поль Дирак, выводя релятивистское уравнение движения для поля электрона, получил также и решение для некой иной частицы с той же массой и противоположным, положительным, электрическим зарядом. Единственная известная в то время частица с положительным зарядом – протон, не могла быть этим двойником, так как значительно отличалась от электрона, в том числе и в тысячи раз большей массой.

Позже, в 1932-м году американский физик Карл Андерсон подтвердил предсказания Дирака. Изучая космические лучи, он открыл античастицу электрона, которая сегодня называется позитрон. Спустя 23 года на американском ускорителе были обнаружены антипротоны, а еще через год – антинейтрон.

Частицы и античастицы

Как известно, любая элементарная частица обладает рядом характеристик, чисел, описывающих ее. Среди них следующие:

  • Масса – физическая величина, которая определяет гравитационное взаимодействие объекта.
  • Спин – собственный момент импульса элементарной частицы.
  • Электрический заряд – характеристика, указывающая на возможность создания телом электромагнитного поля, и участия в электромагнитном взаимодействии.
  • Цветовой заряд – абстрактное понятие, которое объясняет взаимодействие кварков и формирование ими других частиц — адронов.

Также другие различные квантовые числа, определяющие свойства и состояния частиц. Если описывать античастицу, то простым языком – это зеркальное отображение частицы, с той же массой и электрическим зарядом. Почему же ученых так заинтересовали частицы, которые просто отчасти схожи и частично отличны от своих подлинников?

Оказалось, что столкновение частицы и античастицы ведет к аннигиляции – их уничтожению, и высвобождению соответствующей им энергии в виде других высокоэнергетических частиц, то есть маленький взрыв. Мотивирует к изучению античастиц и тот факт, что вещество, состоящее из античастиц (антивещество) самостоятельно не образуется в природе, согласно наблюдениям ученых.

Общие сведения об антивеществе

Выходя из вышесказанного, становится ясно, что наблюдаемая Вселенная состоит из материи, вещества. Однако, следуя известным физическим законам, ученые уверены в том, что вследствие Большого Взрыва обязаны образоваться в равном количестве вещество и антивещество, чего мы не наблюдаем. Очевидно, что наши представления о мире являются неполными, и либо ученые что-то упустили в своих расчетах, либо где-то за пределами нашей видимости, в отдаленных частях Вселенной имеется соответствующее количество антиматерии, так сказать «мир из антивещества».

Этот вопрос антисимметрии представляется одной из самых известных нерешенных физических задач.

Согласно современным представлениям, структура вещества и антивещества почти не отличаются, по той причине, что электромагнитное и сильное взаимодействия, определяющие устройство материи, одинаково действуют как по отношению частицам, так и античастицам. Данный факт был подтвержден в ноябре 2015 года на коллайдере RHIC в США, когда российские и зарубежные ученые измерили силу взаимодействия антипротонов. Она оказалась равной силе взаимодействия протонов.

Получение антивещества

Рождение античастиц обычно происходит при образовании пар частица-античастица. Если при столкновении электрона и его античастицы – позитрона, высвобождается два гамма-кванта, то для создания электрон-позитронной пары понадобится высокоэнергетический гамма-квант, взаимодействующий с электрическим полем ядра атома. В лабораторных условиях это может происходить на ускорителях или в экспериментах с лазерами. В природных условиях – в пульсарах и около черных дыр, а также при взаимодействии космических лучей с некоторыми видами вещества.

Что такое антивещество? Для понимания достаточно привести следующий пример. Простейшее вещество, атом водорода состоит из одного протона, определяющего ядро, и электрона, который вращается вокруг него. Так вот антиводород – это антивещество, атом которого состоит из антипротона и вращающегося вокруг него позитрона.

Общий вид установки ASACUSA в ЦЕРНе, предназначенной для получения и изучения антиводорода

Несмотря на простую формулировку, синтезировать антиводород достаточно сложно. И все же в 1995-м году на ускорителе LEAR в ЦЕРНе ученым удалось создать 9 атомов такого антивещества, которые прожили всего 40 наносекунд и распались.

Позже, при помощи массивных устройств была создана магнитная ловушка, которая удержала 38 атомов антиводорода в течение 172 миллисекунд (0,172 секунды), а после 170 000 атомов антиводорода – 0,28 аттограмм (10 -18 грамм). Такого объема антивещества может быть достаточно для дальнейшего изучения, и это успех.

Стоимость антивещества

Сегодня с уверенностью можно заявить, что самое дорогое вещество в мире не калифорний, реголит или графен, и, конечно же, не золото, а антивещество. Согласно подсчетам NASA –создание одного миллиграмма позитронов будет стоить около 25 миллионов долларов, а 1 г антиводорода оценивается в 62,5 триллиона долларов. Интересно, что нанограмм антивещества, объем, который был использован за 10 лет в экспериментах ЦЕРНа, обошелся организации в сотни миллионов долларов.

Применение

Изучение антиматерии несет в себе весомый для человечества потенциал. Первое и наиболее интересное устройство, теоретически работающее на антивеществе – варп-двигатель. Некоторые могут помнить таковой из известного сериала «Звездный путь» («Star Trek»), двигатель питался энергией от реактора, работающего на основе принципа аннигиляции материи и антиматерии.

В действительности существует несколько математических моделей подобного двигателя, и согласно их расчетам, для космических кораблей будущего понадобится совсем немного античастиц. Так, семимесячный полет до Марса может сократиться в продолжительности до месяца, за счет 140 нанограммов антипротонов, которые выступят катализатором ядерного деления в реакторе корабля. Благодаря подобным технологиям могут осуществиться и межгалактические перелеты, которые позволят человеку подробно изучить другие звездные системы, и в будущем колонизировать их.

Однако, антивещество, как и многие другие научные открытия, может нести угрозу человечеству. Как известно, ужаснейшая катастрофа, атомная бомбардировка Хиросимы и Нагасаки была произведена при помощи двух атомных бомб, общая масса которых составляет 8,6 тонн, а мощность – около 35 килотонн. А вот при столкновении 1 кг вещества и 1 кг антивещества высвобождается энергия равная 42 960 килотонн. Самая мощная бомба, когда-либо разработанная человечеством — АН602 или «Царь-бомба» высвободила энергию около 58 000 килотонн, но весила 26,5 тонн! Подводя итоги всего вышесказанного, можно с уверенностью сказать, что технологии и изобретения на основе антиматерии могут привести человечество, как к небывалому прорыву, так и к полному самоуничтожению.

Между материей и антиматерией больше сходств, чем отличий - и то и другое:

    организовано одинаково: состоит из молекул;

    молекулы в обоих случаях состоят из атомов;

    атомы в обоих случаях состоят из ядра в центре и облака лептонов вокруг;

    и материя и антиматерия одинаково участвуют в гравитационном взаимодействии. Т.е. «кусок» и того и другого определённой массы будет одинаково падать на, например, Землю;

    если взять вещество и соответствующее ему антивещество (например, водород и антиводород), то масса их атомов будет одинаковой и положительной (т.е. антиматерия не имеет ничего общего с материей с отрицательной массой или с материей с мнимой массой);

    раз масса одинакова, то и энергия одинаковая и положительная (т.е. антиматерия не имеет ничего общего с отрицательной энергией);

  • и то и другое одинаково реально, не является чем-то невиданным, как уже упомянутое вещество с мнимой массой, а реально существует и может быть получено (рождено) в ускорителях частиц.
    То есть и то и другое - это реально существующая материя, объективная реальность.

Есть между ними и отличия: если атом вещества «собран» из положительного ядра и электронов, то атом антивещества - из антипротона и позитронов. Электроны и позитроны - это лёгкие (условно безмассовые) частицы (лептоны), которые отличаются друг от друга электрическим зарядом. Например, изотоп натрия-22 в процессе своего радиоактивного распада излучает позитроны (происходит β+-распад). Ядро антивещества несёт отрицательный электрический заряд, потому что в свою очередь кварки в нём «замещены» на антикварки. Антикварки нельзя также легко наблюдать как позитроны, но антипротоны в ускорителях частиц получить и «поймать» можно. На ускорителях удавалось получать в том числе и атомы антиводорода.

Но если материя и антиматерия одинаково реальны, то почему же мы видим вокруг себя одну только материю, а существование антиматерии вообще было долгое время считалось спорным и только теоретически предсказывалось?

Проблема в том, что материя и антиматерия при контакте друг с другом анигилируют. В самом деле, если электрон повстречает на своём пути позитрон, то они радостно кинутся друг другу в объятия и… Нет они не исчезнут бесследно, они анигилируют с выделением энергии. Т.е. это даже очень хорошо, что поблизости вокруг нас нет антиматерии.

Существует гипотеза, что материя и антиматерия возникли при большом взрыве, потом произошла анигиляция, но в результате нарушения симметрии часть материи осталась. Из неё и состоит, всё что мы успели исследовать к настоящему моменту.

Остаётся открытым вопрос, возможно ли существование где-то антивселенной. Т.е. вселенной, где симметрия была нарушена в другую сторону. Теоретически нет физических законов, которые бы запрещали её существование.

Антиматерия могла бы быть полезна, как это говорилось, в народном хозяйстве:) Есть идеи построить двигатели, использующие антивещество как топливо. Это позволило бы человечеству добраться до далёких звёзд. Но это пока только проекты, так как производство пока нереально. На 2004г производство 1г антивещества теоретически стоило бы 100 квадриллионов долларов, при том что теми мощностями пришлось бы для этого трудиться 100 миллиардов лет.

АНТИВЕЩЕСТВО, вещество, состоящее из атомов, ядра которых имеют отрицательный электрический заряд и окружены позитронами – электронами с положительным электрическим зарядом. В обычном веществе, из которого построен окружающий нас мир, положительно заряженные ядра окружены отрицательно заряженными электронами. Обычное вещество, чтобы отличать его от антивещества, иногда называют койновеществом (от греч. койнос – обычный). Однако в русской литературе этот термин практически не употребляется. Следует подчеркнуть, что термин «антивещество» не совсем правилен, поскольку антивещество – тоже вещество, его разновидность. Антивещество обладает такими же инерционными свойствами и создает такое же гравитационное притяжение, как и обычное вещество.

Говоря о веществе и антивеществе, логично начать с элементарных (субатомных) частиц. Каждой элементарной частице соответствует античастица; обе имеют почти одинаковые характеристики, за исключением того, что у них противоположный электрический заряд. (Если частица нейтральна, то античастица также нейтральна, но они могут различаться другими характеристиками. В некоторых случаях частица и античастица тождественны друг другу.) Так, электрону – отрицательно заряженной частице – соответствует позитрон, а античастицей протона с положительным зарядом является отрицательно заряженный антипротон. Позитрон был открыт в 1932, а антипротон – в 1955; это были первые из открытых античастиц. Существование античастиц было предсказано в 1928 на основе квантовой механики английским физиком П.Дираком.

При столкновении электрона и позитрона происходит их аннигиляция, т.е. обе частицы исчезают, а из точки их столкновения испускаются два гамма-кванта. Если сталкивающиеся частицы движутся с небольшой скоростью, то энергия каждого гамма-кванта составляет 0,51 МэВ. Эта энергия есть «энергия покоя» электрона, или его масса покоя, выраженная в единицах энергии. Если же сталкивающиеся частицы движутся с большой скоростью, то энергия гамма-квантов будет больше за счет их кинетической энергии. Аннигиляция происходит и при столкновении протона с антипротоном, но процесс в этом случае протекает гораздо сложнее. В качестве промежуточных продуктов взаимодействия рождается ряд короткоживущих частиц; однако спустя несколько микросекунд как окончательные продукты превращений остаются нейтрино, гамма-кванты и небольшое число электрон-позитронных пар. Эти пары в конечном итоге могут аннигилировать, создавая дополнительные гамма-кванты. Аннигиляция происходит и при столкновении антинейтрона с нейтроном или протоном.

Коль скоро существуют античастицы, возникает вопрос, не могут ли из античастиц образовываться антиядра. Ядра атомов обычного вещества состоят из протонов и нейтронов. Самым простым ядром является ядро изотопа обычного водорода 1 H; оно представляет собой отдельный протон. Ядро дейтерия 2 H состоит из одного протона и одного нейтрона; оно называется дейтроном. Еще один пример простого ядра – ядро 3 He, состоящее из двух протонов и одного нейтрона. Антидейтрон, состоящий из антипротона и антинейтрона, был получен в лаборатории в 1966; ядро анти- 3 He, состоящее из двух антипротонов и одного антинейтрона, было впервые получено в 1970.

Согласно современной физике элементарных частиц, при наличии соответствующих технических средств можно было бы получить антиядра всех обычных ядер. Если эти антиядра окружены надлежащим числом позитронов, то они образуют антиатомы. Антиатомы обладали бы почти в точности такими же свойствами, как и обычные атомы; они образовали бы молекулы, из них могли бы формироваться твердые тела, жидкости и газы, в том числе и органические вещества. Например, два антипротона и одно ядро антикислорода вместе с восемью позитронами могли бы образовать молекулу антиводы, сходную с обычной водой H 2 O, каждая молекула которой состоит из двух протонов ядер водорода, одного ядра кислорода и восьми электронов. Современная теория элементарных частиц в состоянии предсказать, что антивода будет замерзать при 0° С, кипеть при 100° С и в остальном вести себя подобно обычной воде. Продолжая такие рассуждения, можно прийти к выводу, что построенный из антивещества антимир был бы чрезвычайно сходен с окружающим нас обычным миром. Этот вывод служит отправной точкой теорий симметричной Вселенной, основанных на предположении, что во Вселенной равное количество обычного вещества и антивещества. Мы живем в той ее части, которая состоит из обычного вещества.

Если привести в соприкосновение два одинаковых куска из веществ противоположного типа, то произойдет аннигиляция электронов с позитронами и ядер с антиядрами. При этом возникнут гамма-кванты, по появлению которых можно судить о происходящем. Поскольку Земля по определению состоит из обычного вещества, в ней нет заметных количеств антивещества, если не считать мизерного числа античастиц, рождающихся на больших ускорителях и в космических лучах. То же самое относится и ко всей Солнечной системе.

Наблюдения показывают, что в пределах нашей Галактики возникает лишь ограниченное количество гамма-излучения. Отсюда ряд исследователей делают вывод об отсутствии в ней сколько-нибудь заметных количеств антивещества. Но этот вывод не бесспорен. В настоящее время нет способа определить, например, состоит ли данная близкая звезда из вещества или антивещества; звезда из антивещества испускает точно такой же спектр, как и обычная звезда. Далее, вполне возможно, что разреженное вещество, заполняющее пространство вокруг звезды и тождественное веществу самой звезды, отделено от областей, заполненных веществом противоположного типа – очень тонкими высокотемпературными «слоями Лейденфроста». Таким образом, можно говорить о «ячеистой» структуре межзвездного и межгалактического пространства, в которой каждая ячейка содержит либо вещество, либо антивещество. Эту гипотезу подкрепляют современные исследования, показывающие, что магнитосфера и гелиосфера (межпланетное пространство) имеют ячеистую структуру. Ячейки с разной намагниченностью и иногда также с разными температурой и плотностью разделены очень тонкими токовыми оболочками. Отсюда следует парадоксальный вывод, что указанные наблюдения не противоречат существованию антивещества даже в пределах нашей Галактики.

Если раньше не было убедительных аргументов в пользу существования антивещества, то теперь успехи рентгеновской и гамма-астрономии изменили положение. Наблюдались явления, связанные с огромным и часто в высшей степени беспорядочным выделением энергии. Вероятнее всего, источником такого энерговыделения была аннигиляция.

Шведский физик О.Клейн разработал космологическую теорию, основанную на гипотезе симметрии между веществом и антивеществом, и пришел к выводу, что процессы аннигиляции играют решающую роль в процессах эволюции Вселенной и формирования структуры галактик.

Становится все более очевидным, что основная альтернативная ей теория – теория «большого взрыва» – серьезно противоречит данным наблюдений и центральное место при решении космологических проблем в ближайшем будущем, скорее всего, займет «симметричная космология».

Новое на сайте

>

Самое популярное