Домой Профилактика Как климат определяет архитектуру строения. Связь между климатом и архитектурой зданий

Как климат определяет архитектуру строения. Связь между климатом и архитектурой зданий

Страница 8 из 11

УСЛОВИЯ, ВЛИЯЮЩИЕ НА СОЗДАНИЕ АРХИТЕКТУРНОГО ПРОИЗВЕДЕНИЯ

После общих замечаний, которые должны нас ввести в круг главных архитектурных проблем, познакомимся детальнее с терминологией архитектуры, с ее техническими и стилистическими элементами. Примем тот порядок изложения, который определяется последовательным возникновением произведения архитектуры.

Прежде чем архитектор приступает к разработке плана будущего здания, он должен познакомиться со строительной площадью, так как та ситуация, в которую должно вступить будущее здание, во многих отношениях заранее предопределяет направление и цель архитектурного замысла. Особенно тесная связь между естественной ситуацией и замыслом архитектора проявляется на ранних ступенях развития архитектуры. С течением же времени архитекторы научаются все более радикально противодействовать требованиям природы. Кроме того, история искусства свидетельствует, что есть эпохи и стили, которые склонны более считаться с материальными условиями ситуации (барокко), и другие эпохи, которые часто стремятся проводить свои архитектурные идеи наперекор требованиям натуры (Ренессанс).

Какие же требования может предъявлять архитектору ситуация? Прежде всего, это окружающая природа, тот пейзаж, тот рельеф почвы, в который надлежит вкомпоновать архитектуру: замок на горе, естественно, будет отличаться другим характером, чем замок на берегу озера. Во-вторых, строитель должен считаться с тем архитектурным окружением, которое ожидает его постройку: в перспективе тесно застроенной улицы здание неизбежно должно получить другую форму, чем в свободно расположенной группе домов. Далее, знакомясь со строительной площадью, архитектор, естественно, примет во внимание качество самой почвы, на которой он собирается строить. Для плохого грунта (торф, наносный песок) не годятся те фундаменты, которые приспособлены для хорошего грунта (камень, песок, сухая глина, гравий). При сырой почве человек стремится поднять свое жилище над водой: строения на сваях, возвышающиеся над уровнем озера, были распространены в эпоху неолита и теперь еще часто применяются в некоторых странах и особенно в приморских городах (Индокитай, Венеция).

Вообще жилище, выстроенное из дерева, всегда стремились по возможности изолировать от земли, так как дерево, хорошо сохраняющееся в воде, гниет в сырой почве. Жилища горцев – деревянные срубы, поставленные на каменные глыбы, – и теперь еще сохраняют традиции старинного деревянного зодчества. Из рассказов греческого писателя Павсания мы знаем, что в одном из древнейших греческих храмов – храме Геры в Олимпии – колонны были первоначально из дерева и что они опирались на каменные базы и каменный фундамент. Раскопки в Микенах подий ), на котором возвышались храмы этрусков , выстроенные из дерева. Впоследствии римляне заимствовали подий у этрусков как чисто декоративный мотив для каменных построек. С этой точки зрения интересно сравнить архитектуру готики и Ренессанса. Обычно принято противопоставлять строгое чутье симметрии у архитекторов Ренессанса как бы беспорядочной, живописно произвольной композиции в средневековой архитектуре. Не следует ли, однако, искать этому контрасту другое объяснение? Архитектор Ренессанса исходил в своей композиции из заранее намеченной геометрической схемы, которой он стремился подчинить природные условия; готический архитектор, напротив, подчинял свою композицию требованиям естественной ситуации. Поэтому, когда ему приходилось иметь дело с ровной почвой, он мог создавать и строго симметричную композицию. и в святилищах Древней Греции вполне подтверждают свидетельства античных писателей. Того же самого происхождения высокое подножие (так называемый

Еще более радикальное влияние, чем рельеф почвы, могут оказывать на архитектурное творчество условия климата. Уже отмечались некоторые особенности этого воздействия при характеристике проблемы покрытия. Здесь может идти речь о различии температуры, о яркости света и теплоте солнечных лучей, о степени сырости и силе ветра. Влияние климата сказывается, прежде всего, в ориентации зданий и в планировке городов.

В северных странах ориентация, разумеется, подсказана слабостью солнечных лучей и короткостью дня. Поэтому на севере господствуют ориентация на юг и тенденция к возможно более широким улицам. Огромная ширина улиц в Петербурге, которая вместе с тем определяет чрезвычайно крупный масштаб его монументов, вызвана именно желанием дать солнечным лучам возможно более свободный доступ. Напротив, жители юга стремятся избежать слишком горячего солнца. Поэтому, например, римский теоретик архитектуры Ветрувий не советовал располагать комнаты на юг или запад. Поэтому же улицы южного города часто поражают северян своей узостью и редко бывают ориентированы с севера на юг. Для южных городов характерно также обилие портиков и крытых галерей , окаймляющих улицы. В позднеантичных городах – Милете, Эфесе, Антиохии – портиками были окружены все главные площади. Из итальянских городов Болонья еще и теперь сохранила крытые галереи вдоль всех главных улиц.

Теми же требованиями климата объясняется также план частного жилища на востоке и на юге. На улицу выходят замкнутые стены без окон, главные же помещения расположены вокруг внутреннего двора. В Древнем Риме главная комната с очагом получала свет из центрального отверстия в крыше, а так как балки, ограничивающие это отверстие, чернели от дыма очага, комната получила название черной – атриум (от греч. – atrium). В Греции эпохи эллинизма помещения жилого дома комбинировались вокруг так называемого перистиля – открытого дворика, со всех сторон окруженного колоннадой. Напротив, в полосе умеренного климата проблема обычно несколько усложнялась: обитатели стремились зимой пользоваться южным теплом, а летом искали убежища в свежести севера. Именно такое распределение жилищ по сезонам часто можно встретить во французских дворцах ХVII и ХVIII веков, например, в Лувре.

Не только солнце, но и ветер может определять ориентацию здания: хижина рыбака прячется под укрытие дюн, жилища горцев лепятся на южных или восточных склонах гор. Что же касается осадков, то мы уже видели, какое радикальное воздействие они оказывают на характер покрытия здания. Познакомимся еще с некоторыми вариантами этого воздействия.

В странах с очень обильными осадками преобладают двускатные крыши, причем в странах с особенно бурными, проливными дождями скаты крыш или делаются очень высокими и отвесными, или же сопровождаются специфическим изломом, который препятствует соскальзыванию крышных черепиц (китайской крыши). По той же причине в северных странах башня церкви часто завершается высоким шпилем . Климатическая, а следовательно, и архитектурная ситуация может, однако, значительно изменяться в странах с обильными снегопадами. Если дождю стремятся предоставить возможно быстрые стоки, то снег, напротив, следует задерживать, так как его резкое падение может быть опасно и, кроме того, снежные массы предохраняют здание от холода. Поэтому в горных странах жилые дома имеют обычно широкие крыши с пологими скатами и иногда с надломом, отбрасывающим снег далеко от стен дома. Интересно в этом смысле проследить за вариацией куполов в русском церковном зодчестве: на юге (Киев) распространены заимствованные у Византии полукруглые купола; чем дальше на север (Псков и Новгород), в снежные края, тем заметнее становятся изгиб и заострение купола. Само собой разумеется, что климатические условия сказываются и на профилировании карнизов. В дождливых местностях карнизы обычно сильно выступают вперед, чтобы препятствовать стеканию воды по стенам. Особенно остроумно скомбинирован готический желоб: верхний выступ карниза разбивает стекающую воду, под ним помещена выемка, которая мешает каплям стекать по стене и заставляет их падать.

Количество и форма окон точно так же в значительной степени зависят от климата. В Голландии, где температура не бывает очень низкой, но где редок солнечный луч, окна занимают очень большую площадь. В странах, где недостаток света сочетается с холодной температурой (скандинавские страны, Россия), распространены двойные окна, препятствующие тяге воздуха и понижению температуры. Вместе с тем величина и число окон уменьшаются в странах, где обилие снега содействует яркости отраженного света – во всей альпийской зоне, от Франции до Черного моря, окна в жилых домах использованы очень экономно.

На юге окна обычно редко размещены, чтобы воспрепятствовать проникновению жары в помещение. Интересно сравнить два монументальных здания эпохи Ренессанса, аналогичных по своему назначению – Лувр в Париже и так называемое палаццо Канчеллярии в Риме. В римском дворце окна занимают 12 процентов всей площади фасада, в Лувре же – 21 процент; вышина окон в отношении к общей вышине здания в Канчеллярии составляет 35, а в Лувре – 54 процента. В значительной степени теми же самыми причинами объясняются те перевоплощения, которые готический стиль испытал в разных странах Европы. В Италии, например, готика получила очень слабое развитие. Отчасти это объясняется тем противодействием, которое готической системе оказали местные, античные традиции, но, быть может, еще более важную роль здесь сыграли климатические условия Италии. Стрельчатая арка, составляющая главную конструктивную основу готического стиля, обладает тем преимуществом, что перекладывает всю тяжесть сводов со стен на столбы, а это, в свою очередь, позволяет делать стены более легкими и открывать в них обширные отверстия, заполняемые готическими цветными витражами. Поэтому некоторые французские капеллы готического стиля представляют собой совершенно прозрачные, сквозные павильоны, стеклянные клетки, например средневековая усыпальница французских королей Сен-Шапель. Под итальянским небом не могла возникнуть потребность в таком обилии света, а, следовательно, и стрельчатая арка не могла завоевать широкой популярности: стены итальянских церквей в эпоху готики отличаются массивностью, окон немного, и они обычно небольшого размера; столбы, подпирающие своды, расставлены редко – вместо динамики линий, непрерывного устремления вверх получается спокойное и свободное развертывание пространства в ширину.

Отметим, наконец, влияние климата на развитие полихромии в архитектуре. Нет сомнения, что применение цветных материалов в архитектуре и раскраска зданий процветают в странах с ярким солнцем, с обилием света, то есть на юге: об этом свидетельствует, например, яркая раскраска древнегреческих храмов, пестрая полихромия арабской и мавританской архитектуры. Но не забудем и еще одного климатического фактора, который столь же способствует развитию полихромии, как и яркое солнце: в странах, с обильно выпадающим снегом мы встретимся с той же тенденцией к пестрой раскраске здания, как это происходит в России, Польше, Швейцарии.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

ОДЕССКАЯ ГОСУДАРСВЕННАЯ АКАДЕМИЯ СТРОИТЕЛЬСТВА И АРХИТЕТУРЫ

АРХИТЕКТУРНО-ХУДОЖЕСТВЕННЫЙ ИНСТИТУТ

Кафедра основ архитектурного проектирования и ДАС

РЕФЕРАТ

По основам и методам архитектурного проектирования

на тему:«Природно-климатические факторы, влияющие на особенности формообразования и на принятие архитектурных и архитектурно-дизайнерских решений»

Выполнила:

Алдонина Е.Г.

Руководитель:

Денисенко Ю.Н.

Одесса - 2015

ВВЕДЕНИЕ

3. СВЕТОЦВЕТОВАЯ СРЕДА

5. ИНСОЛЯЦИЯ И СОЛНЦЕЗАЩИТА

6. ЦВЕТ И ЦВЕТОПЕРЕДАЧА

7. ТЕПЛОВОЙ МИКРОКЛИМАТ ЗДАНИЙ

8. АКУСТИКА ЗАЛОВ И ЗАЩИТА ОТ ШУМА

ВЫВОД

СПИСОК ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

Общие положения.место предмета в творческом методе архитектора

Некоторые сведения об эстетической роли света и цвета в архитектурной композиции подчеркивают значение этих факторов в профессиональной подготовке и творческой деятельности архитектора. Однако видимый свет лишь часть того комплекса формо- и пространствообразующих факторов, который входит в творческий метод современного архитектора. Этот комплекс представляет одну из важнейших отраслей архитектурной науки, изучающей взаимосвязи физических параметров, определяющих качество архитектуры: комфортность зданий, их выразительность и экономическую эффективность проектных решений. Эта отрасль раскрывает природу и закономерности восприятия и оценки человеком окружающей его светоцветовой, тепловой и акустической среды (природной и урбанизированной) и составляет в целом «Архитектурную климатологию ».

Крупнейшие мастера архитектуры (Витрувий, Альберти, Корбюзье, Жолтовский, Буров, Аалто) придавали этой науке большое значение в формировании таких категорий, как композиция, стиль, образ, пластика и т. п. Следовательно, «Архитектурная климатология» имеет непосредственные и взаимообусловленные связи с архитектурным проектированием и теорией и критикой архитектуры, формирует творческий метод архитектора и предостерегает его от грубых ошибок

Многие последователи Витрувия называли его основоположником архитектурной кли--матологии.

Такие компоненты естественной и искусственной среды, как солнечная радиация, цвет, воздух (его температура, влажность, скорость и направление движения), осадки и звук нередко играют решающую роль в формировании архитектурно-композиционных или конструктивных решений. Наиболее рациональные решения достигаются при комплексном учете физических параметров среды (светотехнических, теплотехнических и акустических) в самом начале архитектурного проектирования.

В современную эпоху массового индустриального строительства и всемирной экономии невосполняемых энергетических ресурсов архитектура теснейшим образом связана с природно-климатической подосновой и социальными условиями жизни людей. Композиционные приемы и плотность застройки, ориентация зданий по сторонам горизонта, размеры и заполнение светопроемов, пластика фасадов, а также теплоинерционность и звукоизоляция ограждений -факторы, от которых в значительной степени зависят комфортность и выразительность зданий, потеря ими тепла и холода и стоимость их энергетической эксплуатации. Это, по существу, основная проблема, сформулированная самой жизнью для современной и будущей архитектуры. Решение этой проблемы возможно только путем диалектического синтеза искусства, техники и науки, которые извечно были взаимосвязанными и взаимообогащающимися категориями архитектуры.

1. ПРИРОДНО-КЛИМАТИЧЕСКАЯ ПОДОСНОВА АРХИТЕКТУРЫ

«Многие категории архитектуры, такие, как объемно-пространственная композиция, планировочное решение, образ, масштаб и т.п. вплоть до национальных признаков, во многом предопределяются конкретными климатическими условиями и прежде всего спецификой светового климата места строительства.

Световой климат - совокупность природных характеристик освещения и УФ-облучения (количество, спектр и контрастность освещения, яркость ясного и облачного неба, продолжительность солнечного сияния, количество и спектр ультрафиолетовой радиации), которые определяют нормативные значения коэффициента естественного освещения, инсоляции и солнцезащиты, а следовательно,- плотность застройки и ее планировочное решение, размеры и пропорции светопроемов, пластику и масштабность фасадов.

Наибольшее влияние на проектирование зданий и их «энергоемкость» оказывает солнечная радиация в оптическом спектре лучистой энергии-ультрафиолетовая, видимая (видимый свет) и тепловая. Как правило, световому климату того или иного региона соответствует характер природного окружения (ландшафт и вид подстилающей поверхности земли, растительность), в которое архитектор «вписывает» проектируемые объекты.

Тепловой климат - совокупность природных характеристик радиационного, температурно-влажностного и аэрационного состояния окружающей среды (тепловая солнечная радиация, температура, влажность, скорость и направление движения воздуха), которые определяют нормативные значения и исходные данные о расчетных теплотехнических и аэрационных параметрах и их сочетаниях, а следовательно,-комфортность микроклимата в помещениях и городских пространствах, тепло- и хладопотери в зданиях, выбор ограждающих конструкций и материалов.

Акустический климат- совокупность некоторых природно-климатических и акустических характеристик окружающей среды (направление ветров, вид подстилающих поверхностей и уровень транспортных и производственных шумов), которые определяют различный подход к градостроительному и объемному проектированию с учетом защиты от шума и, следовательно, значительно влияют на планировочные и конструктивные решения застройки.

Данные об источниках шума и другие характеристики подготавливаются в виде «шумовых карт» микрорайонов при сборе исходных данных для проектирования.

Таким образом, для современного творческого метода архитектора характерен комплексный подход к его содержанию и последовательности. При этом природно-климатические факторы занимают одно из ведущих мест, так как на протяжении всего процесса проектирования этими вопросами занимается только архитектор, поскольку в проектных организациях соответствующих отделов и специалистов не существует.

Уже на первоначальной стадии - при формировании архитектурной идеи (тема, исходные данные, наброски образа и композиционного замысла и т.п.) чрезвычайно важно правильно оценить природно-климатическую подоснову места строительства для будущего объекта, так как это в значительной степени поможет архитектору избежать грубых ошибок в эстетическом, функциональном и экономическом отношении.

На втором этапе (ситуационный и генеральный план, планировочное решение, фасады, разрезы, макеты) необходимо профессионально и обязательно комплексно проанализировать соответствие архитектурной идеи выявленным требованиям (естественное освещение, видимость, инсоляция, солнцезашита, теплопотери, аэрация, защита от шума). На этой стадии наиболее целесообразны архитектурное макетирование и физическое моделирование генерального плана и архитектурных объемов.

На последней стадии (конструкции ограждений и светопроемов, выбор материалов, светоцветовое и акустическое решение интерьеров) архитектор проверяет принятые решения известными ему аналитическими и графическими методами, чтобы составить обоснованную пояснительную записку к проекту и быть уверенным в том, что будущее сооружение будет соответствовать реальным условиям его восприятия в натуре и в нем будут обеспечены комфортные условия светового, теплового и акустического микроклимата.»

«Организация строительства должна учитывать климатические условия , которые подразделяются на четыре климатических района (I, II, III и IV) . (табл. 1). Климатические районы имеют подрайоны А, Б, В, Г. Климатические районы располагаются с севера на юг примерно: I - до 70° северной широты, II - до 60°, III - до 45°, IV - ниже 45°.

Таблица 1. Климатические районы

В эти 4 климатических района входят 16 микроклиматических подрайонов. В соответствии с этим районированием назначают материал и толщину ограждения, глубину заложения фундамента, рассчитывают конструкции по ветровым и снеговым нагрузкам, определяют объёмно-планировочную структуру.

Ведущими факторами климата являются радиационно-температурные условия (ИНСОЛЯЦИЯ). Условия инсоляции складывается в зависимости от ориентации окон квартир по сторонам горизонта, типов планировки дома, расстояния между зданиями.

По отношению к сторонам света здания могут занимать 3 основных положения:

· меридиональное - здание своей продольной осью параллельно направлению «север-юг»;

· широтное - эта ось параллельна направлению «запад-восток»;

· диагональное - продольная ось направлена под углом к основным направлениям».

2. ПРИРОДНО-КЛИМАТИЧЕСКИЕ ФАКТОРЫ

«В группу природно-климатических(табл.2.) факторов входят следующие факторы:

1) условия атмосферы -- газообразной оболочки земли;

2) условия гидросферы -- водной оболочки земли;

3) условия литосферы -- верхней твердой оболочки земли;

4) растительный и животный мир.

Наибольшее влияние на проектирование индивидуального жилища оказывают атмосферные условия. Это связано с тем, что именно состояние атмосферы определяет тепловой режим поверхности земли, а также газовое и влажностное состояние воздуха.

На Земле существуют различные географические зоны, которые определяются, в основном, различным соотношением тепла и влаги в воздухе -- тропики, пустыни и т.д.

Проектировать универсальное жилище, пригодное для любого климатического района, нецелесообразно с функциональной, экономической и строительной точек зрения. Поэтому, при проектировании индивидуального жилья следует ориентироваться на максимальный учет именно конкретных, а не абстрактных местных условий.

К числу наиболее важных атмосферных условий относятся: температурный, ветровой, влажностный, снеговой, дождевой режимы, уровень солнечной радиации, сезонные различия в погоде и другие. Они воздействуют на человека и жилой дом в комплексе, однако, по-разному в каждом конкретном случае.

Целями рационального проектирования индивидуального жилья с учетом ветров является эффективное использование естественного проветривания помещений жилого дома и снижение негативного воздействия избыточного ветрового напора в суровых климатических условиях. Так, благодаря естественно возникающей разнице давления с наветренной и подветренной стороны дома, возникает проветривание, которое обеспечивает нормативный воздухообмен в помещениях. Требования к нормативному воздухообмену в жилых комнатах, кухнях, санузлах и других помещениях жилья определены в СНиП.

Доказано, что с наветренной стороны, где ветровой напор образует зону повышенного давления, окна, форточки и вентиляционные отверстия могут быть меньшего размера, чем вентиляционные проемы на противоположной стороне дома. Учет ветрового режима очень важен при разработке генерального плана комплексной усадебной застройки жилого дома совместно с хозпо-стройками, гаражом, земельным участком и соседними строениями. Движения воздушных масс следует организовывать приемами архитектуры так, чтобы обеспечивалась аэрация всей застройки и поддерживалась благоприятная экологическая обстановка. Для этого архитектор должен правильно выбрать схему размещения объектов, конфигурацию зданий и интервалы между ними. Например, в жарком влажном климате, с целью интенсивной циркуляции воздуха, следует оставлять между зданиями застройки значительные разрывы»

Таблица 2.Основные климатические факторы, влияющие на архитектурно-строительное решение здания

Климатические факторы

Основные воздействия

Архитектурно-конструк тивные требования и мероприятия

Солнечная радиация

Бактерицидные свойства радиации.

Температурные воздействия

Выбор ориентации по сторонам света.

Форма плана.

Повышение теплоаккумулирующей способности ограждающих конструкций.

Защита от перегрева, создаваемого инсоляцией в летнее время.

Разработка конструктивных солнцезащитных устройств

Ультрафиолетовая

радиация

Бактерицидные свойства ультрафиолетовой радиации

Устройство постоянных и кратковременных установок облучения ультрафиолетовой радиацией.

Выбор отделки интерьеров и фасадов.

Выбор подстилающего слоя на территории.

Выбор конструкций окон и фонарей

Естественное

освещение

Создание светового режима в помещении, здании

Выбор расположения, типов и размеров окон и фонарей. Выбор рода освещения - естественного, искусственного, совмещенного.

Данные о времени использования естественного освещения

Температура и

влажность воздуха

Создание надлежащего микроклимата в помещении, в здании

Выбор объёмной композиции здания.

Выбор ограждения стен, окон, покрытия, фонарей и т. п.

Выбор степени остекления, вентиляции, кондиционирования воздуха

Давление ветра

Защита здания от ветра.

Защита от ветра окон и фонарей.

Аэрация помещений и территории

Атмосферная влага.

Снеговые отложения

Облицовка фасадов, водостойкость стен и покрытий.

Способы удаления осадков - водостоки,

уборка снега. Борьба со снегообразованием на крыше и на территории.

3. СВЕТОЦВЕТОВАЯ СРЕДА

«Светоцветовая среда формируется лучистой энергией естественных и искусственных источников излучения в пределах его оптического спектра и предопределяет видимость, восприятие и комфортность архитектурных форм и пространств. Светоцветовая среда создается естественным, искусственным и совмещенным освещением, инсоляцией и солнцезащитными средствами, пластическим и цветовым решением фасадов и интерьеров зданий. Комфортная светоцветовая среда обеспечивает наилучшие условия видимости и восприятия архитектуры, а также способствует повышению производительности и качества труда.

Актуальнейшей проблемой световой среды в современной архитектуре является выбор рациональных размеров светопроёмов и видов солнцезащитных и светорегулирующих устройств. В последние годы вновь распространилась тенденция к увлечению большими площадями остекления фасадов и солнцезащитной пластикой вне связи с назначением зданий и условиями светового климата, оправдываемое «максимальным визуальным раскрытием внутреннего пространства к внешней среде». Это явление в значительной степени связано с тем распространившимся влиянием на творческий процесс архитектора, которое оказали многие постройки известнейших представителей нового движения в архитектуре и, в особенности, Мис ван дер Роэ. Однако тысячелетний опыт строительства в любых климатических условиях и особенно исследования, проведенные за последние годы, показывают, что такой подход к проектированию не способствует формированию архитектурного образа и приводит к резкому дискомфорту и огромным теплопотерям. Особую проблему создают так называемые «ленточные» светопроемы и наружные солнцезащитные элементы на фасадах зданий. Дело не только в том, что «ленточные» светопроемы нивелируют образ общественного здания, приближая его к промышленному, но и в том, что, как правило, невозможно уменьшить вертикальные размеры таких светопроемов из соображений их светоактивности и архитектуры интерьеров. К тому же такие светопроемы не решают проблему достаточности освещения в современных зданиях с большой глубиной помещений и ограниченной высотой. Даже 100%-ное остекление фасадов в этом случае неэффективно.

Следует отметить также и еще один пример некритических оплошностей некоторых архитекторов к выбору композиционных элементов в архитектуре общественных зданий: такой элемент архитектуры, как крупномасштабные наружные солнцезащитные экраны, применяется сейчас не только в центральных районах, где они бесполезны, но даже на Крайнем Севере.

На этих примерах видно, насколько важно в эстетической подготовке архитектора изучение архитектурно-светотехнических факторов проектирования.

4. ЕСТЕСТВЕННОЕ, ИСКУССТВЕННОЕ И СОВМЕЩЕННОЕ ОСВЕЩЕНИЕ

В зависимости от особенностей светового климата местности архитектор корректирует объемно-пространственное и планировочное решение зданий или сооружений и их расположение на генеральном плане. Важнейшими факторами при этом являются: выбор рациональных размеров и пропорций светопроемов, их ориентации по сторонам горизонта, глубины помещений и пластики и силуэта фасадов. Следовательно, эти факторы влияют как на поиск образа здания (в том числе «северного» или «южного»), так и служат важнейшим средством ограничения площади остекления здания, определяющей его комфортность и экономическую целесообразность. Привычным для человека является естественное освещение, поэтому его характеристики, свойственные данному месту строительства (яркость неба, контрастность, направленность, спектральный состав), могут служить ориентирами при проектировании искусственного освещения интерьеров. Именно этим объясняется стремление применять в интерьерах светящие поверхности, успешно имитирующие по яркости и спектру естественный свет, а по архитектурному решению окна и фонари. Это одно из наиболее действенных средств выражения современной архитектуры, возникших в связи с появлением новых источников света-газоразрядных ламп и электролюминесцентных панелей (рис.1 ).

Совмещенное освещение - прогрессивный прием освещения интерьеров естественным и искусственным светом, характеризующийся (в отличие от смешанного освещения) доминирующей ролью естественного света при постоянно или периодически действующем дополнительном искусственном освещении (в зонах помещений с недостаточным естественным освещением), близком к естественному по распределению яркости и спектру.

Пользование нормами не предопределяет художественный образ объекта, задуманного при проектировании, поэтому в процессе работы над проектом автор должен предвидеть взаимодействие намеченных средств освещения с пространством, формой, пластикой и цветом. Трудности проектирования архитектурного светового образа здания заключаются не в определении освещенности или числа светильников, а в проектировании и реализации в натуре задуманных светлотных соотношений между поверхностями, ограничивающими пространство, а также между деталями и фоном, на котором они воспринимаются.

Существует два принципиально различных решения световой архитектуры. Для первого характерно выражение тектоники, свойственное дневным (природным) условиям освещения (на фасадах - темные светопроемы, светлые стены, тени от карнизов и деталей, направленные вниз, и т.п.; в интерьерах - связь с природной световой средой.

Второй основан на театральном эффекте освещения, при котором живописные и скульптурные свойства света используются для создания светоцветовых композиций

и акцентов вне связи с природной световой средой.

Для каждого из этих приемов существует своя область рационального применения: первый - в рабочих помещениях, спортивных залах, картинных галереях и т.п.; второй - в театральных и концертных залах, в музеях и ресторанах.

Образ многих интерьеров общественных зданий рождается из стремления архитектора создать впечатление большого, насыщенного светом пространства, устранить ощущение монотонности, а также тяжести конструкций.

Эта задача приобретает особое значение в подземных сооружениях (станции метрополитена, подземные переходы, улицы и площади и т.д.).

Психологический эффект устранения ощущения тяжести и большой напряженности конструкций достигнут правильным распределением светопотоков на некоторых станциях Московского и" Ленинградского метрополитена («Электрозаводская»,(рис .2 ), «Маяковская»(рис.3 )).

При проектировании освещения в демонстрационных залах и картинных галереях, а также операторских особое значение приобретают всякого рода блики, отблески, зеркальные отражения, которые создают зрительный дискомфорт, мешающий нормальному видению рассматриваемых предметов. В этих случаях следует пользоваться графическим методом определения зоны зрительного дискомфорта для устранения различных помех из поля зрения.

Для ограничения слепящего действия окон и светильников общего освещения необходимо соблюдать регламентированные нормами показатели дискомфорта в зависимости от характера зрительной работы.

Хорошим примером световой архитектуры интерьеров, в которых отчетливо выражены современные тенденции взаимодействия архитектуры и искусственного освещения, служит Кремлевский Дворец съездов, в котором успешно решена проблема светового ансамбля как синтеза световой архитектуры отдельных интерьеров. (рис. 4. ) Роль света, как своеобразного гида в этом ансамбле определяется тем, что последовательность ощущений, сопутствующих зрительному процессу, развертывается во времени, а впечатление нарастает при движении посетителя от гардероба до зрительного зала, отличающегося праздничностью и насыщенностью светом.

Проведенными НИИСФ исследованиями было установлено, что наибольшее значение в восприятии станций метрополитена имеет не уровень освещенности, а соотношение яркостей поверхностей потолка, стен и пола. Результаты фотометрических и субъективных исследований позволяют утверждать, что устранение ощущения подземности и высокая степень насыщенности светом достигнуты в тех перронных залах, где эти соотношения приближаются к соотношению яркости зенитной части неба (потолок), неба у горизонта (стены) и земли (пол).

Архитектурное освещение зрительного зала Кремлевского Дворца Съездов в Москве. Общий вид и детали потолка

Их оптимум находится в пределах от 5:2:1 до 10:3:1. Пластическая выразительность интерьера контролировалась соотношением освещенности, создаваемой рассеянным и направленным световыми потоками. Результаты исследований (объективных фотометрических и субъективных статистических) показали, что пластика стен и потолка хорошо воспринимается при соотношении рассеянного и направленного световых потоков, равном 0,4 и менее.

В современных зданиях и сооружениях широко применяется встроенное освещение в виде светящих потолков, карнизов, ниш, панелей, которые включаются в архитектуру интерьера.

За последние годы широкое распространение в интерьерах общественных зданий получили светящие потолки и панели. Архитектурно-конструктивные системы светящих потолков и панелей обычно представляют собой подвесные конструкции, а пространство над ними используется для монтажа ламп.

Архитектурное и светотехническое качества потолка зависят от степени равномерности распределения яркости светящей поверхности и контрастов между светящими элементами потолка и переплетами, на которые опирается стекло. Практика показывает, что при применении светорассеивающего стекла равномерная яркость светящего потолка обеспечивается при отношении максимальной яркости к минимальной: 1,4-на светящей поверхности больших размеров и 1,1-на небольших участках. Это достигается при соблюдении следующего соотношения двух величин: расстояния между лампами и высотой расположения ламп над защитным стеклом: при люминесцентных лампах-2,4; при зеркальных лампах-0,9; при обычных лампах накаливания-1,8. ,

Яркостный контраст между светящей поверхностью и переплетом (или глухой частью потолка) для больших помещений зависит от светлоты отделки и соотношения между площадью остекленной поверхности и общей площадью потолка. Обогащение архитектурного решения светящего потолка достигается применением различного рода диффузоров; особенно интересны диффузоры из сложных по форме металлических анодированных элементов.

Светящие потолки могут выполнять также и акустические (глушение шума) и санитарно-технические функции. Схема устройства многофункционального потолка приведена на рис. 5

Схемы устройства многофункционального потолка в фойе и залах при открытом положении звукопоглощающей отделки в виде потолочных плит

Для создания светящего потолка могут быть применены встроенные точечные светильники с нормальными или зеркальными лампами мощностью до 150 Вт. Роль диффузора в них выполняет кольцевая решетка с защитным углом 30-45". При этом потолок получается темным с ярко светящими точками ламп (так называемое «звездное небо»).

В архитектуре общественных зданий видное место занимает проблема синтеза светового ансамбля, понимаемого как синтез световой архитектуры его отдельных интерьеров. В таких ансамблях световая партитура может определять последовательность восприятия интерьеров и их эмоциональное воздействие на человека, развертывающееся во времени.

При отсутствии в окружающем пространстве выявляемых светом архитектурных акцентов зрительная ориентация человека затрудняется. И наоборот, заранее предусмотренное в проекте распределение яркостей, контрастов позволяет облегчить и организовать ориентацию человека в здании. освещение микроклимат здание инсоляция

5. ИНСОЛЯЦИЯ И СОЛНЦЕЗАЩИТА

Воздействие инсоляции на человека и окружающую среду двойственно: оно благоприятно в гигиеническом и эстетическом отношении и экономически выгодно, поэтому необходимо обеспечить доступ солнечного света в городские пространства и интерьеры зданий в любых географических районах, оно же вызывает перегрев, световой дискомфорт, УФ-переоблученность и перерасход электроэнергии на регулирование микроклимата, что предопределяет необходимость защиты от него и рационального использования.

По словам Витрувия, архитектор «... может исправить своим искусством вред, приносимый природой».

Комфортные ощущения и эстетическое воздействие инсоляции (выразительность и динамика пластики, «солнечность» и разнообразие световой среды), т.е. положительные эмоции возможны только при условии исключения таких ее качеств, которые угнетают человека:

Физиологически и психологически недостаточных уровней освещенности и УФ- и ИК-облученности;

Чрезмерных уровней яркостей поля адаптации, УФ- и ИК-необлученности.

Конкретные предложения по строительному нормированию инсоляции впервые были сделаны советскими архитекторами в 40-х годах. В основу нормирования было положено общеоздоровительно, санирующее и психоэстетическое воздействие инсоляции на человека и окружающую его среду. Нормируемой величиной в действующих нормах инсоляции является продолжительность в зависимости от градостроительной ситуации, типов зданий, географической широты и климатических условий. Например, в жилых и общественных зданиях (за исключением детских учреждений и школ) должна быть обеспечена продолжительность инсоляции в часах.

В сложных градостроительных ситуациях допускается одноразовая прерывность инсоляции бактерицидной и видимой областях спектра.

Расчеты инсоляции застройки при проектировании сводятся к определению продолжительности инсоляции помещений и степени затенения фасадов зданий и территорий застройки. Расчеты следует производить непосредственно на генеральном плане застройки с помощью накладного графика, показанного на р ис.6 , основанного на методе проекций с числовыми отметками, впервые использованном А. М. Рудницким и М. Тваровским и адаптированном к условиям архитектурного проектирования.

График для определения инсоляций зданий и территорий

Сложность проблемы инсоляции в архитектуре объясняется как ее положительными, так и отрицательными воздействиями (тепловой и световой дискомфорт, снижение восприятия формы и цвета при чрезмерных яркостях, выцветание материалов). Поэтому не менее важно предусматривать различные средства защиты от инсоляции.

Практика показывает, что наибольшее число грубых ошибок наблюдается в тех случаях, когда архитектор решает задачу солнцезащиты некомплексно и на последних стадиях проектирования. Наиболее распространенной ошибкой является применение массивных и теплоемких затеняющих экранов, монолитно связанных с основной ограждающей конструкцией (незащищенные лоджии, бетонные пространственные структуры). Такие конструкции аккумулируют солнечное тепло и путем теплообмена с остеклением дополнительно передают его в помещение. Нередки случаи применения солнцезащитных устройств без учета ориентации здания по сторонам горизонта и использования солнцезащитного стекла, уменьшающего лишь тепловую радиацию Солнца и не устраняющего его слепящее действие. В таких общественных зданиях, как школа.

6. ЦВЕТ И ЦВЕТОПЕРЕДАЧА

Проектирование цветового решения фасада или интерьера здания лишь на основе интуиции и вкуса архитектора неизбежно приводит к грубому искажению цветовой композиции при переходе от проекта к натуре. Это объясняется тем, что при этом не учитываются ни состав света (особенно его современных источников), ни условия цветовой адаптации, ни соотношения размеров цветного объекта и фона, ни оптическое смешение цветов, наблюдаемых с больших расстояний. Между тем, как показали исследования, комфортное цветовое решение интерьеров оказывает значительное влияние на его эстетическую оценку и производительность труда человека, особенно в таких помещениях, как учебные, торговые, выставочные и т.п. Поэтому при цветовом проектировании необходимо учитывать основные параметры светоцветовой среды, зависящие от светового климата местности и спектра выбранных источников света, насыщенность цвета и угловые размеры цветных поверхностей в поле зрения, составляющих в итоге установившееся количество воспринимаемого цвета в пространстве и его психоассоциативное воздействие.

Особое значение для современной архитектуры имеют резкие изменения в цветопередаче, которые происходят при переходе от естественного света к искусственному. Поэтому выбор цветовой композиции и гармоничных сочетаний цветных поверхностей следует производить при том освещении, которое заложено в проекте. Как правило, помещения большинства общественных зданий воспринимаются как при естественном, так и при искусственном свете, поэтому цветные эскизы следует проверять в обоих случаях, принимая в итоге оптимальное решение.

7. ТЕПЛОВОЙ МИКРОКЛИМАТ ЗДАНИЙ

«Комфортный микроклимат в зданиях создается естественными и искусственными средствами.

К естественным средствам относятся архитектурно-планировочные и конструктивные решения зданий (композиционное решение, ориентация, размеры и геометичность заполнения светопроемов, теплоизоляция ограждений), которые предопределяют эксплуатационную эффективность и экономичность искусственных средств (отопление, вентиляция и кондиционирование воздуха). При этом архитектору важно помнить, что даже идеальные в теплотехническом отношении стены и покрытия не дадут ожидаемого эффекта, если композиция здания характеризуется чрезмерным периметром наружных стен, неглубокими помещениями, большими площадями остекления и нерациональной ориентацией по отношению к гелиотермической оси и господствующим ветрам. Более того, в этом случае отопление, вентиляция и особенно кондиционирование воздуха или окажутся бездейственными в поддержании гигиенически необходимого микроклимата в помещениях, или будут работать с большим перерасходом тепла и электроэнергии. Поэтому комплексность творческого метода архитектора и здесь оказывается важнейшим условием достижения оптимального результата.

Оценкой теплового климата и аэрационного режима места строительства по исходным климатическим данным занимается прежде всеего архитектор-автор на первой стадии проектирования, когда выявляются принципиальные решения здания, предопределяющие его теплотехническую, гигиеническую и экономическую эффективность.

Поэтому архитектор должен всегда умело пользоваться исходными климатическими данными и прежде всего картами строительно-климатического районирования и зон влажности.

Требования к микроклимату в зданиях и их теплозащите регламентируются в зависимости от назначения помещений. Например, в картинных галереях круглый год должна сохраняться относительно постоянная температура и влажность воздуха, обеспечивающие сохранность экспозиции, а в детских учреждениях, больницах, школах-гигиенически допустимый микроклимат (температура воздуха, воздухообмен, инсоляционный режим), исключающий возможность перегрева или переохлаждения.

Наибольшее внимание теплотехническим факторам архитектор должен уделять при проектировании общественных зданий в экстремальных климатических районах . Есть один общий принцип подхода к формированию здания для северных и южных (с сухим жарким климатом) районов: здание должно быть компактным с высокой теплоинерцион-ностью ограждений и минимально допустимыми светопроемами, чтобы на севере обеспечивалась минимальная теплоотдача зимой, а на юге-максимальная защита от солнечной радиации летом. При этом здание в жарко-сухих районах отличается по своему архитектурному решению тем, что имеет ярко. выраженную пластику фасадов за счет наружных солнцезащитных устройств на светопроемах и иногда самозатеняемой фактуры стен. Иной характер имеет здание в районах с жарким влажным климатом: свободная павильонная композиция, способствующая интенсивному проветриванию застройки, галерейный принцип планировки здания, облегченные конструкции.

Теплоинерционностъ (теплоустойчивость) здания-основная его теплотехническая характеристика, которая зависит от степени передачи ограждающими конструкциями (стенами, покрытиями, полами, окнами, фонарями) тепла, влаги и воздуха. Способность ограждающих конструкций регулировать передачу этих физических параметров из окружающей среды в здание (или наоборот) и определяет, главным образом комфортность микроклимата и энергетические потери.

Чтобы оптимизировать теплопотери зданиям зимой и его хладопотери летом, необходимо так запроектировать ограждающие конструкции, чтобы они удовлетворяли основным нормативным требованиям к сопротивлению теплопередаче, теплоустойчивости, влажностному режиму и воздухопроницаемости.» [Архитектура и градостроительство в суровом климате.Полуй Б.М. ]

8. АКУСТИКА ЗАЛОВ И ЗАЩИТА ОТ ШУМА

Требования к акустическому комфорту зданий оказывают значительное влияние на их планировочное объемно-пространственное и конструктивное решение. В свою очередь, на акустические качества зданий влияют как степень шумозащиты от внешних источников, так и звукоизоляция ограждающих конструкций.

В зависимости от требований к акустическим качествам зрительные залы делятся на следующие группы:

· залы с естественным (натурным) звучанием музыки, пения, речи; в этих залах зритель воспринимает звуки, идущие непосредственно от исполнителей и инструментов (прямые и отраженные от внутренних поверхностей интерьера). Качество их звучания зависит в основном от архитектурно-строительного решения залов: оперных театров, концертных, музыкально-драматических и т.п.;

· залы, в которых музыку, пение и речь зритель вопринимает с помощью звуковоспроизводящей электроакустической аппаратуры (кинотеатры, конференц-залы и др.); в этих залах особое внимание уделяется качеству воспроизведения, естественности и отчетливости звучания; последнее зависит не только от архитектурного решения залов, но и от качества и условий работы электроакустической аппаратуры;

· залы универсального назначения, в которых наряду со звукоусилением предусматриваются электроакустические средства для обогащения, а также для воспроизведения всякого рода звуковых эффектов (залы театров; конференц-залы для проведения съездов, конгрессов; киноконцертные залы. Дворцы культуры).

Наибольшей сложностью характеризуется акустическое проектирование оперных театров и концертных залов большой вместимости. Качество звучания в таких залах оценивается комплексом субъективных показателей, которые определяются методом статистических оценок специалистов (акустиков и музыкантов). К таким показателям относятся естественность (полнота) звучания; ясность звучания; отчетливая последовательность чередования звуков, выразительность тембра; равновесие звучания всех групп инструментов в разных зонах зрительного зала.

Удовлетворение этих требований в большой степени зависит от архитектурного решения зала, его размеров, формы, отделочных материалов и конструкций и их расположения в пространстве интерьера.

В архитектурном отношении пространство зрительного зала делится на два акустически связанных объема.

Первый представляет собой гигантского размера рупор-эстраду. В этом объеме формируются пластические поверхности-экраны, которые обеспечивают направление и интенсивность первых, акустически наиболее важных отражений. Акустические раковины эстрады способствуют созданию звучания стереофонического характера. Профиль раковины-эстрады выбирают в основном так, чтобы отраженный звук направлялся в зал и на сценическую площадку. Благодаря этому каждый оркестрант ансамбля может следить за игрой своих коллег и согласовывать с ними свое исполнение.

Второй объем занят местами для зрителей: размеры, форма и архитектурное решение этого объема должны способствовать формированию равномерного звукового поля и обеспечивать оптимальное время реверберации в диапазоне низких, средних и высоких частот звучания.

Повышение диффузности (равномерности и изотропности) звукового поля достигается также применением крупноразмерной пластической отделки стен и потолка, т.е. членением поверхности пилястрами, складками, ложами и т.п., а также специальными акустическими элементами. Широкое распространение в современных залах получили наклонные плоские или криволинейного очертания панели (или падуги), расположенные по всей ширине зала и одновременно используемые для освещения.

При проектировании концертных залов большое значение имеют выбор и расположение звукопоглощающих материалов и конструкций. Их количество в зале определяется соответствующим расчетом, приведенным в учебнике «Основы, строительной физики». Из акустических материалов наибольшее распространение при отделке концертных залов, оперных театров, музыкальной комедии и др, получили резонирующие панели из дерева. Значение резонансной частоты панели зависит от ее жесткости, которая определяется массой панели и способами ее спряжения со стеной (или перекрытием).

Широко применяются резонансные поглотители кассетного типа в виде многослойной конструкции с облицовочным слоем из перфорированных металлических листов, обклеенных с внутренней стороны несколькими слоями ткани (подобная звукопоглощающая отделка применена, в частности, в зале Конгрессов Дворца культуры и науки в Варшаве). Разновидностью резонансных поглотителей являются подвесные поглотители диффракционного типа кубообразной, конусообразной и других форм.

За последние годы в отечественной и зарубежной практике получили распространение залы универсального (многоцелевого) назначения. Как показывает опыт, такие залы целесообразно оборудовать электроакустическими системами звукоусиления.

При проектировании универсальных залов рекомендуется: располагать системы звукоусиления в таких скрытых от зрителей местах, которые способствуют созданию в зале диффузного (равномерного) звукового поля; обеспечивать время реверберации, необходимое для нормальной работы системы звукоусиления.

Амбиофонические установки включают в себя:

· систему звукоусиления в зале, в которую входят микрофоны, устанавливаемые на сцене, микрофон-ревербератор и распределительная система громкоговорителей;

· систему звуковоспроизведения, в которую входят магнитофоны, ам-биофон-ревербератор и распределительная система громкоговорителей в зале и на сцене.

Примером гармонического архитектурного решения современного зала универсального назначения может служить Кремлевский Дворец съездов. (рис.4 ) . Прилегающая к сцене часть боковых стен и потолка образует гигантскую рупорообразную раковину. Основная часть боковых стен отделана щелевым поглотителем из вертикально расположенных деревянных реек криволинейного профиля.

Для акустической настройки зала звукопоглощающая конструкция стен имеет выдвижной щит, который прикрывает пористый поглотитель звука. Превращая таким образом звукопоглощающие панели в звукоотражающие, можно изменять общее звуковое поглощение, соответственно жанру представления.

Наиболее эффективными строительно-акустическими средствами снижения шума на территории являются экраны, размещаемые между источниками шума и объектами защиты от шума. Экранами могут служить придорожные подпорные, ограждающие и специальные защитные стенки, а также искусственные элементы рельефа местности. Экранами могут служить также здания, в помещениях которых допускаются уровни звука 50 дБА (здания предприятий бытового обслуживания населения, торговли, общественного питания, коммунальных предприятий и др).

Проблема звукоизоляции зданий весьма сложна вследствие разнообразия как источников шума, так и путей распространения его по зданию. В основном эта проблема сводится к решению вопросов звукоизоляции помещений от внешних шумов и от внутренних шумов, возникающих в здании. Источниками внешних шумов являются городской транспорт и различного рода производственные предприятия. В тех случаях, когда не удается снизить проникающий внешний шум в помещения здания средствами шумо-защиты, следует применять наружные ограждающие конструкции с повышенной звукоизоляцией. Внешний шум проникает в помещения через оконные конструкции, звукоизоляции которых следует уделять особое внимание. Источниками внутренних шумов являются люди, а также бытовое и инженерное оборудование. Изоляция помещений от внутренних шумов достигается правильной внутренней планировкой здании, снижением шумности санитарно-технического и инженерного оборудования, обеспечением нормативной звукоизолирующей способности ограждающих конструкций.»

ВЫВОД

Многие категории архитектуры, такие, как объемно-пространственная композиция, планировочное решение, образ, масштаб и т.п. вплоть до национальных признаков, во многом предопределяются конкретными климатическими условиями и прежде всего спецификой светового климата места строительства. Таким образом, настоящий материал является важным и существенным дополнением к архитектурно строительным требованиям и природно-климатическим факторам, влияющим на особенности формообразования, на принятие архитектурных и архитектурно-дизайнерских решений и на проектирование зданий. Полноценный учет данных положений позволяет проектировать и строить высококомфортабельные, надежные, удобные и красивые жилые дома.

СПИСОК ЛИТЕРАТУРЫ

1. Аронин Дж.Э. Климат и архитектура / Москва: ЁЁ Медиа / 1959 / 253 с.

2. Полуй Б.М. Архитектура и градостроительство в суровом климате / Ленинград: Стройиздат, 1989г. / 340 с.

Размещено на Allbest.ru

Подобные документы

    Природно-климатические особенности, определяющие условия проектирования, строительства и эксплуатации жилых зданий в жарких районах. Меры естественного регулирования помещений. Озеленение, обводнение и благоустройство прилегающих к зданию территорий.

    диссертация , добавлен 10.07.2015

    Определение продолжительности инсоляции в помещении с учетом затемняющего влияния архитектурно-конструктивных элементов фасада. Расчет инсоляции оконного проема на фасаде многоэтажного дома, ориентируемого по сторонам света согласно заданному азимуту.

    контрольная работа , добавлен 21.01.2014

    Анализ местоположения объекта недвижимости. Описание кадастрового квартала. Природно-климатические особенности района. Социальная инфраструктура. Характеристика потребительских свойств дома. Факторы, влияющие на успешную деятельность объекта недвижимости.

    курсовая работа , добавлен 28.04.2012

    Соответствие проектных решений по строительству цеха по производству огнетушителей и огнетушащего порошка действующим нормам и правилам, основания для проектирования. Архитектурно-планировочные решения генерального плана, природно-климатические условия.

    контрольная работа , добавлен 09.09.2010

    Природно-климатические условия, экологическая ситуация и система озеленения населенного пункта. Анализ территории (рекреационная нагрузка загрязнение атмосферы, шум и вибрация). Архитектурно-планировочные решения. Обоснование выбора ассортимента растений.

    курсовая работа , добавлен 27.11.2014

    Природно-климатические характеристики района строительства здания автосалона, предназначенного для торговли автомобилями и их обслуживания. Архитектурно-планировочное и объемное решение здания. Определение трудоемкости и продолжительности монтажных работ.

    дипломная работа , добавлен 10.04.2017

    Обеспечение требуемой звукоизоляции методом расчета ожидаемой шумности. Строительные нормы. Главные характеристики источников внешних и внутренних звуков. Уровни проникающего шума в помещениях жилых и общественных зданий и шума на территории застройки.

    дипломная работа , добавлен 06.12.2012

    Природно-климатические условия строительства. Архитектурно-планировочное решение здания. Методы и приемы работ при кирпичной кладке. Монтаж сборных конструкций. Расчет свайного фундамента. Теплотехнический расчет наружной стены. Наружная отделка фасадов.

    дипломная работа , добавлен 09.12.2016

    Природно-климатические данные и генеральный план здания литейного цеха. Объемно-планировочное решение конфигурации и экспликация помещений. Архитектурно-конструктивное решение строения: фундамент, покрытия, стены. Расчет административно-бытового корпуса.

    курсовая работа , добавлен 17.07.2011

    Бифункциональные жилые здания. Металлические конструкции зданий комплексной поставки. Прогрессивные виды утеплителя для стен зданий. Внедрение систем наружного утепления. Мансардная крыша и вентиляция. Виды кровельного пирога для утепленных мансард.

УДКУДК (083,74)

Ломакин И.А.

Студент

2 курс, факультет «Художественно-графический»

Курский государственный университет

Россия, г. Курск

ХАРАКТЕРИСТИКА ОСНОВНЫХ КЛИМАТИЧЕСКИХ ЭЛЕМЕНТОВ, ВЛИЯЮЩИХ НА АРХИТЕКТУРНОЕ ПРОЕКТИРОВАНИЕ.

К климатическим элементам относят: влажность воздуха, температуру, осадки, ветер, солнечную радиацию, осадки. Климатическую характеристику территории, города позволяют составить относительная влажность воздуха, температура, ветер. Максимальные значения основных климатических факторов дают возможность составить характеристику климата. При этом критические значения разных климатических факторов функционально взаимосвязаны. Можно выявить специфику климата, обладая знанием критериальных значений элементов. Также можно найти степень отклонения элементов от комфортных условий, сформулировать комплекс требований подлежащих учету при проектировании придомовой территории, застройки, зданий.

Перегрев помещений возможен при температуре воздуха свыше 21 °С. Это явление в частности проявляется при наличии изоляции (облучения прямыми солнечными лучами). Перегрев организма человека начинается при температуре воздуха свыше 28 °С. В таких условиях необходима защита от солнца, а также движение воздуха как в помещении, так и на территории городской застройки.

Необходимо учесть совместное воздействие на человека ветра и температуры. В переходные сезоны года при температуре наружного воздуха близкой к 0°С и относительной влажность более 70% и более существует необходимость в защите пешехода от ветра. Защита желательна также при температуре до -15°С зимой.

Защита необходимо при соответствиях:

Температура воздуха, °С

15…-20

20…-25

25…-30

30…-35

ниже -35

Скорость ветра, м/с

До 3,5

Активная защита пешехода необходима при температурах ниже -35 °С (крытые утепленные переходы). При скорости ветра более 5 м/с и наличии отрицательной температуры на улице происходит резкое усиление охлаждений зданий (на12-15%) и человека. Перенос песка и снега начинается при скорости ветра 6 м/с. В таких условиях необходима защита жилых территорий городов. При скорости ветра свыше 12 м/с происходят механические повреждения элементов зданий.

Неблагоприятным условием для человека является влажность воздуха менее 30% и более 70%. Благоприятным фактором является влажность воздуха находящаяся в промежутке 30-70%(в зависимости от температуры).

При проектировании высотных зданий необходим особый учет параметров ветра. Такое отношение к этому критерию возникает из-за необходимости обеспечить устойчивость зданий под воздействием ветровых нагрузок, возрастающих с высотой. Также, чем выше здание, тем сильнее ветровые завихрения у стен. Сильные потоки ветра обтекают объем, а часть их них опускается вниз и обрушивается на пешеходов, находящихся в близи здания.

На рис. 1 дана характеристика температуры и ветра, совместное воздействие которых необходимо учитывать при формировании внешней среды города.

Большую важность имеет сочетание относительной влажности воздуха и температуры. В жаркую погоду возникает необходимость в том, чтобы высокая влажность не мешала человеку отдавать излишки тепла, которое накапливается в организме при этих условиях, во внешнюю среду. Если эта необходимость не реализуется, то у человека может возникнуть тепловой удар. Из графика температурно-влажностного режима (рис. 2) следует, что для сохранения комфортных условий в летнее время при возрастании температуры от 18°С до 28°С необходимо, чтобы относительная влажность воздуха снижалась до уровня 30-50%.

Рис. 1. Комплексное воздействие температуры и ветра на здания и человека во внешней среде


Рис. 2. График температурно-влажностного режима в теплый период года

Воспользовавшись приведенными графиками и выявленными зависимостями, грамотный архитектор принимает правильные решения для обеспечения комфорта в жилой среде.

Список использованной литературы:

1. Архитектурная физика: Учеб. для вузов, Спец. А-87 «Архитектура» / Под ред. Н. В.Оболенского. – М.: Стройиздат, 1997. – 448 с.: ил.

2. Город, архитектура, человек и климат / Мягков М. С., Губернский Ю. Д., Конова Л. И., Лицкевич В. К. Под ред. к. т.н. М. С.Мягкова, – М.: «Архитектура-С», 2007. – 344 с.;ил.

3. Лицкевич В. К. Жилище и климат. – М.: Стройиздат, 1984. – 288 с.; ил.

4. СНиП, * Строительная климатология. М. 2000.

5. СНиП 2.01.01.-82. Строительная климатология и геофизика. М. 1983.

6. Руководство по строительной климатологии (пособие по проектированию). – М.: Стройиздат, 1977.

8. Аронин Д. Климат и архитектура М., Госстройиздат, 1959.

Температура и влажность воздуха - характеристики, в наибольшей степени характеризующие климат местности. Для основных городов России эти параметры, среднестатистические для каждого месяца в году, представлены в СНиПе 23-01-99 «Строительная климатология». Виды погоды характеризуются градациями температуры в данной местности. Наибольшее значение имеет температура в течение рабочего дня. В отношении теплового воздействия на человека характерны следующие виды погоды: Холодная (;< +8° С); требуется отопление гражданских зданий. Прохладная (= +8...+15°С); при этой температуре, как правило, держат закрытыми окна и не пользуются длительно балконами, лоджиями и террасами. Теплая (= +16...+28 °С); позволяет длительно использовать открытые помещения. Жаркая (выше +28 °С); вызывает необходимость ограничения перегрева помещений и использования искусственного охлаждения воздуха. Кроме того, для многих районов целесообразно выделение очень холодной (< -12° С) и очень жаркой (выше +32 °С) погоды, неблагоприятно воздействующей на человека. В СНиП «Строительная климатология» даются среднемесячные температуры воздуха, включающие температуру в ночное время. где - средняя амплитуда колебаний температуры в течение суток для данного месяца. Ее величины не приводятся в СНиП 23-01-99 «Строительная климатология» (рис. 1.2). Поэтому при климатическом анализе надо пользоваться СНиП II-А.6-72.

Продолжительность характерных видов погоды в течение года определяет основные черты климата, которые влияют на архитектурные и конструктивные решения зданий.

Таким образом, в течение четырех месяцев в году необходимо ограничение перегрева помещений с помощью солнцезащитных устройств и применение искусственного охлаждения воздуха. В остальное время года можно использовать летние помещения. Отопление практически не требуется и должно быть устроено исключительно для обогрева помещений в случаях непредвиденного понижения температуры воздуха. Тип здания должен устанавливаться с учетом защиты помещений от перегрева в жаркий период года. Целесообразны открытые помещения, озеленение и обводнение вокруг зданий. Необходимы солнцезащита и искусственное охлаждение. Ориентация продольных фасадов должна быть широтной (С-Ю) с расположением в северной части обслуживающих и коммуникационных помещений, лестниц, кухонь и т.п., а в южной части - большей части жилых комнат. При правильном проектировании зданий, применении солнцезащиты и специальных систем, использующих солнечную энергию для горячего водоснабжения и отопления, можно свести энергопотребление при эксплуатации здания к минимуму.

Как видно из таблицы, климат в г. Якутске резко континентальный. В течение 7 месяцев в году требуется отопление, причем в течение трех месяцев погода очень холодная, неблагоприятно воздействующая на человека. В течение трех месяцев в году погода очень жаркая, требующая ограничения перегрева и искусственного охлаждения. Все это необходимо учитывать при проектировании, применять двойные тамбуры, закрытые переходы между домами и другие специальные мероприятия. Здесь тоже возможна экономия энергозатрат при эксплуатации зданий. Особенно за счет горячего солнечного водоснабжения и солнечного отопления в апреле и сентябре. Однако эта экономия будет значительно меньше, чем в примере 1. Приведенные примеры представляют собой элемент климатического анализа в архитектурно-строительном проектировании. Этот анализ ведется «от общего к частному», т.е. от оценки фоновых закономерностей, характерных для крупных территорий, к оценке микроклимата конкретных участков строительства с учетом рельефа, растительности, водных пространств, характера застройки. Эти факторы могут влиять на фоновые характеристики, которые принимаются по СНиП «Строительная климатология». Схематическая карта климатического районирования для строительства приведена па, рис. 1.3. Согласно этой карте, территория России разделена на IV пояса с подрайонами. По этой карте и таблицам в СНиП «Строительная климатология» выявляются сезоны года, определяющие тип зданий в данной местности. Так, например, климат в примере 1 может быть кратко описан так: г.Сочи:8-Т+ЗЖ+1-ОЖ; г. Якутск: ЗОХ+2Х+2П+2Т+ЗОЖ

Анализ ветрового режима по сторонам горизонта и суммарной радиации на различно ориентированных поверхностях позволяет решить вопрос о направлениях раскрытия архитектурного пространства или его защиты. При оценке конкретного участка проектировщик изучает ландшафт, рельеф площадки, делает поправки на микроклимат склонов разной ориентации, устанавливает условия обдувания зданий ветром, рассчитывает инсоляцию, естественное освещение помещений и др. Для этого используются геодезические подосновы участков с горизонталями, отметками, существующей застройкой. При утверждении проекта в территориальном Архитектурно - планировочном управлении требуется представление следующих разделов проекта, связанных с вопросами физики среды и ограждающих конструкций:

  • - энергосбережение и строительная теплотехника;
  • - защита от шума;
  • - естественное освещение и инсоляция.

Без согласования этих разделов любое строительство зданий (за исключением индивидуального строительства) считается незаконным.

Проектирование и развитие городов в значительной степени базируется на изучении природных условий местности. Климат является одним из наиболее важных факторов, учитываемых в градостроительстве.

Климат - это усредненный, многолетний режим атмосферных явлений, характерный для каждого места Земли. В основном, климат обусловливается географическим положением данного места. На климатические характеристики наиболее существенно влияют широта и высота местности, близость к морскому побережью, особенность растительного покрова.

Сравнительная устойчивость климата объясняется тем, что количество солнечного тепла, получаемого Землей, почти постоянно из года в год. Существенно не изменяется и сама земная поверхность с ее материками и океанами, горами и равнинами на суше, холодными и теплыми течениями в морях и океанах. Воздушные течения в атмосфере, хотя и отличаются большим разнообразием и изменчивостью, имеют свои закономерности, проявляющиеся на протяжении длительного времени.

Климатические особенности сами по себе, т. е. вне их влияния на плодородие земель и сельское хозяйство, имеют из всех физико - географических факторов наименьшее значение для образования и развития современных городов. Общеизвестно, что концентрация населения в городах обусловлена экономическими причинами, а не климатическими особенностями как таковыми. Например, Древний Рим, первый и единственный «город - гигант» античной эпохи, всегда отличался нездоровыми климатическими условиями; Лондон славится своей нездоровой сыростью и пресловутыми туманами; на лагунах построена Венеция; на болотах - Санкт-Петербург.

Однако значение климата в отношении характера планировке застройки, озеленения городов, вплоть до выбора типа и материала жилища, огромно. В градостроительной практике учитываются следующие основные климатические характеристики:

Температура и влажность воздуха;

Ветровой режим на территории;

Приход солнечной радиации.

Температура воздуха определяет выбор теплоизолирующих свойств ограждающих конструкций зданий. Прежде всего, учитывается расчетная температура наружного воздуха в холодный период года. Для теплотехнических расчетов ограждающих конструкций применяют следующие температуры наружного воздуха: среднюю температуру наиболее холодной пятидневки и абсолютную минимальную температуру наружного воздуха. Чем ниже расчетные температуры, тем эффективнее должна быть теплоизоляция стен и дачных перекрытий, плотнее оконные двойные (или даже тройные) переплеты.

При принятии градостроительных решений учитывается среднегодовая температура, средняя температура по месяцам, а также перепад температур, т. е. разность между летними и зимними температурами.

Температура воздуха влияет на планировку жилых кварталов и микрорайонов. От температурного режима зависят расстояния от жилья до учреждений обслуживания, так называемые радиусы доступности. При низких зимних температурах эти радиусы должны быть, возможно, меньше, особенно до детских учреждений. Для северных городов России разрабатываются специальные проекты зданий, связанных между собой утепленными переходами.

Температура воздуха влияет и на планировку квартир. В условиях жаркого климата при высоких летних температурах необходимо предусматривать сквозное проветривание квартир, создание лоджий. Следует иметь в виду, что микроклимат города создает в условиях плотной городской застройки повышенную температуру (на 2 - 3 градуса) за счет сокращения турбулентного ветрового перемешивания воздуха, увеличенной поверхности инсоляции и тепловыделения промышленных объектов и жилья.

Ветровой режим. Ветер - движение воздуха относительно земной поверхности, вызываемое неравномерным распределением атмосферного давления. Ветровой режим учитывается в градостроительстве, прежде всего, с точки зрения выявления господствующих направлений и их скоростей. Наглядно отражает преобладающее направление ветра в данной точке диаграмма ветров.

Роза ветров - это графическое изображение повторяемости ветров (в процентах) по румбам горизонта (рис.3.1).

Рис. 3.1. Роза ветров

Роза ветров строится по 8 или 16 румбам - основным географическим сторонам света. По этим направлениям в определенном масштабе откладывают в виде векторов значения повторяемости направлений или значения средних и максимальных скоростей ветра, соответствующие каждому румбу. Концы векторов соединяют ломаной линией. Господствующее направление ветра соответствует самому большому вектору розы ветров, направленному к ее центру. Основанием для построения розы ветров служит многолетний ряд наблюдений на ближайшей метеорологической станции.

На основе анализа розы ветров по направлениям делаются выводы о функциональном зонировании территории, взаимном размещении селитебных и промышленных районов. Промышленные районы с вредными выбросами в атмосферу должны размещаться с подветренной стороны, чтобы они не загрязняли воздух жилых кварталов. Основное направление ветра учитывается также при устройстве аэродромах полос для посадки и взлета самолетов.

В условиях сурового климата севера учет направлений господствующих ветров позволяет организовать ветрозащиту жилой территории. Ветрозащита осуществляется путем использования искусственных ветровых преград (зданий, зеленых посадок высокой ствольной растительности) или естественных преград (использование подветренных склонов, больших массивов существующей зелени).

Характеристика районов по скоростям ветра позволяет проводить мероприятия по ветрозащите или, наоборот, организации проветривания. Оптимальная скорость ветра находится в пределах до 4 м/с. Участки, на которых скорость ветра меньше 1 м/с, относятся к непроветриваемым, а более 4 м/с - к зонам интенсивного проветривания.

В целях ослабления больших скоростей преобладающих ветров корректируется направление улиц в городе. Кроме того, разрабатываются дополнительные ветрозащитные мероприятия, например посадка деревьев, кустарников. В условиях сильных ветров лучшая ветрозащита обеспечивается применением протяженных многосекционных зданий, расположенных поперек господствующего направления ветра. В районах с малыми скоростями ветра, наоборот, следует избегать сложных конфигураций зданий и их большой протяженности. Здесь более предпочтительны здания типа башен, обеспечивающие максимальное сохранение исходной скорости ветра.

Влажность - содержание водяного пара в воздухе, одна из существенных характеристик климата. Абсолютная влажность - количество водяного пара в граммах, содержащегося в 1 м³воздуха. Относительная влажность - это процентное отношение абсолютной влажности к максимальному количеству водяного пара, которое может содержать 1 м³ воздуха при данной температуре.

Влага оказывает огромное влияние на теплозащитные качества ограждающих конструкций. Известно, что вода - прекрасный проводник тепла, а воздух, особенно сухой, обладает теплоизоляционными свойствами. Поэтому теплоизоляционные материалы с большим количеством пор, заполненных воздухом, имеют прекрасные теплозащитные свойства. Однако при проникновении влаги теплоизоляционная способность любого материала резко ухудшается. Кроме того влага растворяет химические вещества, которые приводят к быстрому разрушению материалов.

Таким образом, повышенная влажность снижает теплоизоляционные свойства ограждающих конструкций зданий, стимулирует процесс коррозии металлов, разрушения материалов. Поэтому влажность воздуха учитывается при выборе материалов для теплоизоляции и конструкций зданий.

Кроме того, повышенная влажность воздуха сильно ухудшает теплоощущения людей. При низких температурах влажность создает впечатление особой дискомфортности. Даже не очень холодная погода при этом воспринимается отрицательно, в то же время даже сильные морозы при сухой, ясной погоде переносятся легко. В жарком климате влажность также действует дискомфортно, влажная жара переносится человеком весьма тяжело.

Ощущения человека во многом зависят от совокупности трех факторов:

Температуры;

Влажности;

Скорости движения воздуха.

Так, при температуре 19°С, влажности 50% и неподвижном воздухе человек испытывает приятное ощущение нормальной комнатной температуры. При той же температуре и влажности, но при движении воздуха со скоростью 0,5 м/с - ощущение, характеризуемое понятием «прохладно», а при скорости 2,5 м/с - человеку становится холодно. А при температуре 24°С, неподвижном воздухе, насыщенном водяными парами, получается ощущение духоты. При той же температуре и влажности, но при скорости ветра 1 м/с - приятное ощущение нормальной температуры.

Инсоляция - облучение прямыми солнечными лучами какой - либо горизонтальной, вертикальной или наклонной поверхности. Это качественная характеристика, определяемая временем освещения.

Нормативная продолжительность инсоляции определена в СНИП 2.07.01 - 89 и зависит от климатической зоны. В зоне, расположенной севернее 58° с. ш., продолжительность непрерывной инсоляции с 22 апреля по 22 августа должна быть не менее 3 часов в день. Для зон южнее 58° с. ш. с 22 марта по 22 сентября - не менее 2,5 часов. Размещение и ориентация зданий детских дошкольных учреждений и общеобразовательных школ, учреждений здравоохранения должны обеспечивать непрерывную трехчасовую продолжительность инсоляции.

При реконструкции жилой застройки или при размещении нового строительства в особо сложных градостроительных условиях (исторически ценная городская среда, дорогостоящая подготовка территории, зона общегородского и районного центра) допускается снижение продолжительности инсоляции помещений на 0,5 часа.

Инсоляция учитывается при организации застройки и выборе территории. Жилая застройка должна обеспечивать равномерное освещение квартир и участков жилой территории, предназначений для отдыха и спорта населения.

В климатических зонах с умеренным климатом здания располагают на местности так, чтобы максимально увеличить продолжительность инсоляции. В условиях выраженного рельефа для жилой застройки и размещения участков детских учреждений и зон отдыха выбираются преимущественно южные склоны, хорошо инсолирумые и с хорошим микроклиматом.

В зонах с жарким климатом, наоборот, предусматривают солнцезащитные мероприятия. Благоустройство территории включает себя устройство навесов, зеленых насаждений с густой разветвленной кроной, сокращающих время прямого солнечного облучения территории.

Инсоляция отдельного здания зависит от его ориентации его сторонам горизонта. Различают меридиональную, широтную и промежуточную ориентацию здания.

При меридиональной ориентации здания располагают основными осями по направлению север - юг. Такая ориентация обеспечивает равномерную инсоляцию обоих фасадов и минимальную площадь участков постоянного затенения. Однако ее недостатком является то, что в околополуденные часы, когда солнечные лучи больше всего богаты ультрафиолетом и теплом, инсолируется лишь торцевая часть зданий.

При широтной ориентации здания располагают основными осями по направлению запад - восток. Здесь инсолируется только один (южный) фасад зданий. Прямые солнечные лучи не попадают в комнаты, ориентированные на север.

При промежуточной ориентации зон постоянного затенения нет, все четыре фасада здания имеют инсоляцию, однако неравномерную.

Освещение группы зданий зависит, кроме того, и от расстояния на котором находится одно здание от другого, а также от высоты соседнего здания. Для применения вида ориентации зданий на местности учитываются также композиционный прием застройки и рельеф местности.

Кроме рассмотренных факторов, большое значение в градостроительстве имеют и другие элементы климата. Например, величина осадков на данной территории учитывается при инженерном благоустройстве территории, расчете водосборного бассейна, регулировании поверхностного стока и проектировании ливневой канализации.

Новое на сайте

>

Самое популярное